-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver_EMDDF_complex_CVX.m
74 lines (68 loc) · 2.22 KB
/
solver_EMDDF_complex_CVX.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
function [s, F, stats] = solver_EMDDF_complex_CVX(y, x0, A, R, lambda, gamma, slack_mult)
%SOLVER_EMDDF_COMPLEX_CVX Complex variant of EMD-DF implemented with CVX
%
% Solve the complex variant of EMD-DF:
% min_{z, F, u} 0.5 * ||y - As||_2^2
% + lambda * ||s||_1
% + gamma * sum(R(:).*F(:))
% - mu * u
% subject to sum(F, 1)' <= x0;
% sum(F, 2) <= zr_p + zr_n + zi_p + zr_n;
% sum(F(:)) == u;
% sum(zr_p + zr_n + zi_p + zr_n) >= u;
% sum(x0) >= u;
%
% Inputs
% y measurement vector
% x0 prediction
% A measurement matrix
% R flow cost matrix
% lambda sparsity parameter
% gamma dynamics parameter
% slack_mult slack parameter (notation from paper: mu = slack_mult * gamma)
%
%
% Outputs
% s solution
% F EMD flow matrix
% stats optimization statistics
%
% Requires the CVX optimization package: http://cvxr.com/cvx/
%
% Author: Nicholas Bertrand
% Georgia Institute of Technology
% Sensory Information Processing Lab
A = [A, -A, 1i*A, -1i*A];
N = numel(x0);
ind = x0 > 0;
x0_active = abs(x0(ind));
K = sum(ind);
R = R(:, ind);
h_tic = tic();
cvx_begin quiet
% cvx_precision low
variable xp(N,1) nonnegative;
variable xn(N,1) nonnegative;
variable yp(N,1) nonnegative;
variable yn(N,1) nonnegative;
variable F(N,K) nonnegative;
variable u nonnegative;
minimize( 0.5*sum_square_abs(y - A*[xp; xn; yp; yn]) ...
+ lambda*norm([xp; xn; yp; yn], 1)...
... + lambda*sum(norms([xp xn yp yn], 2, 2))...
+ gamma*R(:)'*F(:) ...
- slack_mult*gamma*u );
subject to
sum(F, 1)' <= x0_active;
sum(F, 2) <= xp + xn + yp + yn;
sum(F(:)) == u;
sum(xp + xn + yp + yn) >= u;
sum(x0_active) >= u;
cvx_end
s = (xp - xn) + 1i*(yp - yn);
stats.obj = 0.5*sum_square_abs(y - A*[xp; xn; yp; yn]) ...
+ lambda*norm([xp; xn; yp; yn], 1)...
+ gamma*R(:)'*F(:) ...
- slack_mult*gamma*u;
stats.runtime = toc(h_tic);
stats.nbriter = cvx_slvitr;