-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathaliengo.py
444 lines (373 loc) · 21.1 KB
/
aliengo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import numpy as np
import os
import torch
import sys
sys.path.append("..")
from isaacgym import gymtorch
from isaacgym import gymapi
from isaacgym.torch_utils import *
from MPC_Controller.common.Quadruped import RobotType
from MPC_Controller.robot_runner.RobotRunnerFSM import RobotRunnerFSM
from MPC_Controller.robot_runner.RobotRunnerMin import RobotRunnerMin
from MPC_Controller.Parameters import Parameters
from MPC_Controller.utils import DTYPE
from RL_Environment.sim_utils import ALIENGO, add_random_uniform_terrain, add_uneven_terrains
from .base.vec_task import VecTask
class Aliengo(VecTask):
def __init__(self, cfg, sim_device, graphics_device_id, headless):
self.cfg = cfg
# normalization
self.lin_vel_scale = self.cfg["env"]["learn"]["linearVelocityScale"]
self.ang_vel_scale = self.cfg["env"]["learn"]["angularVelocityScale"]
self.dof_pos_scale = self.cfg["env"]["learn"]["dofPositionScale"]
self.dof_vel_scale = self.cfg["env"]["learn"]["dofVelocityScale"]
self.action_scale = self.cfg["env"]["control"]["actionScale"]
# reward scales
self.rew_scales = {}
self.rew_scales["lin_vel_xy"] = self.cfg["env"]["learn"]["linearVelocityXYRewardScale"]
self.rew_scales["ang_vel_z"] = self.cfg["env"]["learn"]["angularVelocityZRewardScale"]
self.rew_scales["torque"] = self.cfg["env"]["learn"]["torqueRewardScale"]
self.rew_scales["lin_vel_z"] = self.cfg["env"]["learn"]["linearVelocityZRewardScale"]
self.rew_scales["ang_vel_xy"] = self.cfg["env"]["learn"]["angularVelocityXYRewardScale"]
self.rew_scales["collision"] = self.cfg["env"]["learn"]["kneeCollisionRewardScale"]
# command ranges
self.command_x_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_x"]
self.command_y_range = self.cfg["env"]["randomCommandVelocityRanges"]["linear_y"]
self.command_yaw_range = self.cfg["env"]["randomCommandVelocityRanges"]["yaw"]
# plane params
self.plane_static_friction = self.cfg["env"]["plane"]["staticFriction"]
self.plane_dynamic_friction = self.cfg["env"]["plane"]["dynamicFriction"]
self.plane_restitution = self.cfg["env"]["plane"]["restitution"]
# base init state
pos = self.cfg["env"]["baseInitState"]["pos"]
rot = self.cfg["env"]["baseInitState"]["rot"]
v_lin = self.cfg["env"]["baseInitState"]["vLinear"]
v_ang = self.cfg["env"]["baseInitState"]["vAngular"]
state = pos + rot + v_lin + v_ang
self.base_init_state = state
# default joint positions
self.named_default_joint_angles = self.cfg["env"]["defaultJointAngles"]
self.cfg["env"]["numObservations"] = 48
self.cfg["env"]["numActions"] = 12
super().__init__(config=self.cfg, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless)
# other
self.dt = self.sim_params.dt
self.max_episode_length_s = self.cfg["env"]["learn"]["episodeLength_s"]
self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5)
self.Kp = self.cfg["env"]["control"]["stiffness"]
self.Kd = self.cfg["env"]["control"]["damping"]
for key in self.rew_scales.keys():
self.rew_scales[key] *= self.dt
if self.viewer != None:
p = self.cfg["env"]["viewer"]["pos"]
lookat = self.cfg["env"]["viewer"]["lookat"]
cam_pos = gymapi.Vec3(p[0], p[1], p[2])
cam_target = gymapi.Vec3(lookat[0], lookat[1], lookat[2])
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
# get gym state tensors
actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim)
dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
net_contact_forces = self.gym.acquire_net_contact_force_tensor(self.sim)
torques = torch.zeros(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False)
# torques = self.gym.acquire_dof_force_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_net_contact_force_tensor(self.sim)
# self.gym.refresh_dof_force_tensor(self.sim)
# create some wrapper tensors for different slices
self.root_states = gymtorch.wrap_tensor(actor_root_state)
self.dof_state = gymtorch.wrap_tensor(dof_state_tensor)
self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0]
self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1]
self.contact_forces = gymtorch.wrap_tensor(net_contact_forces).view(self.num_envs, -1, 3) # shape: num_envs, num_bodies, xyz axis
self.torques = torques
# self.torques = gymtorch.wrap_tensor(torques).view(self.num_envs, self.num_dof)
self.commands = torch.zeros(self.num_envs, 3, dtype=torch.float, device=self.device, requires_grad=False)
self.commands_y = self.commands.view(self.num_envs, 3)[..., 1]
self.commands_x = self.commands.view(self.num_envs, 3)[..., 0]
self.commands_yaw = self.commands.view(self.num_envs, 3)[..., 2]
self.default_dof_pos = torch.zeros_like(self.dof_pos, dtype=torch.float, device=self.device, requires_grad=False)
for i in range(self.cfg["env"]["numActions"]):
name = self.dof_names[i]
angle = self.named_default_joint_angles[name]
self.default_dof_pos[:, i] = angle
# initialize some data used later on
self.extras = {}
self.initial_root_states = self.root_states.clone()
self.initial_root_states[:] = to_torch(self.base_init_state, device=self.device, requires_grad=False)
self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1))
self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.reset_idx(torch.arange(self.num_envs, device=self.device))
def create_sim(self):
self.up_axis_idx = self.set_sim_params_up_axis(self.sim_params, 'z')
self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self._create_ground_plane()
self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs)))
def _create_ground_plane(self):
if Parameters.flat_ground:
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
plane_params.static_friction = self.plane_static_friction
plane_params.dynamic_friction = self.plane_dynamic_friction
self.gym.add_ground(self.sim, plane_params)
else:
add_random_uniform_terrain(self.gym, self.sim)
def _create_envs(self, num_envs, spacing, num_per_row):
asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets')
asset_file = ALIENGO
#asset_path = os.path.join(asset_root, asset_file)
#asset_root = os.path.dirname(asset_path)
#asset_file = os.path.basename(asset_path)
asset_options = gymapi.AssetOptions()
asset_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE
# asset_options.collapse_fixed_joints = True
# asset_options.replace_cylinder_with_capsule = True
asset_options.flip_visual_attachments = True
asset_options.fix_base_link = self.cfg["env"]["urdfAsset"]["fixBaseLink"]
# asset_options.density = 0.001
asset_options.angular_damping = 0.0
asset_options.linear_damping = 0.0
asset_options.armature = 0.01
# asset_options.thickness = 0.01
# asset_options.disable_gravity = False
asset_options.use_mesh_materials = True
robot_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options)
self.num_dof = self.gym.get_asset_dof_count(robot_asset)
self.num_bodies = self.gym.get_asset_rigid_body_count(robot_asset)
start_pose = gymapi.Transform()
start_pose.p = gymapi.Vec3(*self.base_init_state[:3])
body_names = self.gym.get_asset_rigid_body_names(robot_asset)
self.dof_names = self.gym.get_asset_dof_names(robot_asset)
extremity_name = "foot"
feet_names = [s for s in body_names if extremity_name in s]
self.feet_indices = torch.zeros(len(feet_names), dtype=torch.long, device=self.device, requires_grad=False)
knee_names = [s for s in body_names if "thigh" in s]
self.knee_indices = torch.zeros(len(knee_names), dtype=torch.long, device=self.device, requires_grad=False)
hip_names = [s for s in body_names if "hip" in s]
self.hip_indices = torch.zeros(len(hip_names), dtype=torch.long, device=self.device, requires_grad=False)
self.base_index = 0
dof_props = self.gym.get_asset_dof_properties(robot_asset)
for i in range(self.num_dof):
# *force control
dof_props['driveMode'][i] = gymapi.DOF_MODE_EFFORT
dof_props['stiffness'][i] = 0.0
dof_props['damping'][i] = 0.0
# *position control
# dof_props['driveMode'][i] = gymapi.DOF_MODE_POS
# dof_props['stiffness'][i] = self.cfg["env"]["control"]["stiffness"] #self.Kp
# dof_props['damping'][i] = self.cfg["env"]["control"]["damping"] #self.Kd
env_lower = gymapi.Vec3(-spacing, -spacing, 0.0)
env_upper = gymapi.Vec3(spacing, spacing, spacing)
self.actor_handles = []
self.envs = []
# *MPC controller handles
self.controllers = []
self.robotType = RobotType.ALIENGO
for i in range(self.num_envs):
# create env instance
env_ptr = self.gym.create_env(self.sim, env_lower, env_upper, num_per_row)
robot_handle = self.gym.create_actor(env_ptr, robot_asset, start_pose, "robot", i, 1, 0)
self.gym.set_actor_dof_properties(env_ptr, robot_handle, dof_props)
# self.gym.enable_actor_dof_force_sensors(env_ptr, robot_handle)
self.envs.append(env_ptr)
self.actor_handles.append(robot_handle)
if Parameters.bridge_MPC_to_RL:
# *MPC create controllers
robotRunner = RobotRunnerMin()
robotRunner.init(self.robotType)
self.controllers.append(robotRunner)
for i in range(len(feet_names)):
self.feet_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], feet_names[i])
for i in range(len(knee_names)):
self.knee_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], knee_names[i])
for i in range(len(hip_names)):
self.hip_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], hip_names[i])
self.base_index = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], "trunk")
def pre_physics_step(self, actions):
self.actions = actions.clone().to(self.device)
if Parameters.bridge_MPC_to_RL:
# *MPC control
# actions: (num_envs, 12) [-1, 1]
# torques: (num_envs, num_dofs)
# dof_state: (num_envs*num_dofs, 2)
# root_states: (num_envs, pos[3]+quat[4]+lin_vel[3]+ang_vel[3])
# commands: (num_envs, 3)
# * [-1, 1] -> [a, b] => [-1, 1] * (b-a)/2 + (b+a)/2
actions_rescale = torch.mul(self.actions,
torch.tensor(
Parameters.MPC_param_scale,
dtype=torch.float,
device=self.device)).add(
torch.tensor(
Parameters.MPC_param_const,
dtype=torch.float,
device=self.device))
# torch.cuda.synchronize()
actions_cpu = actions_rescale.detach().cpu().numpy().astype(DTYPE)
torques_cpu = np.zeros((self.num_envs, self.num_dof), dtype=DTYPE)
dof_state_cpu = self.dof_state.detach().cpu().numpy().astype(DTYPE)
root_states_cpu = self.root_states.detach().cpu().numpy().astype(DTYPE)
commands_cpu = self.commands.detach().cpu().numpy().astype(DTYPE)
for idx, controller in enumerate(self.controllers):
commands = np.concatenate((commands_cpu[idx], actions_cpu[idx], [0.0]), axis=0).astype(DTYPE)
torques_cpu[idx] = controller.run(dof_state_cpu[idx*self.num_dof:(idx+1)*self.num_dof],
root_states_cpu[idx],
commands)
torques_gpu = torch.from_numpy(torques_cpu.astype(np.float32)).to(self.device)
# *maybe clip output torques is not a good idea in training
# *causing weird forward motion
# self.torques = torch.clip(torques_gpu, -55., 55.)
self.torques = torques_gpu
self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(self.torques))
else:
# *force control
torques = torch.clip(self.Kp*(self.action_scale*self.actions + self.default_dof_pos - self.dof_pos) - self.Kd*self.dof_vel,
-55., 55.)
self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(torques))
# *position control
# targets = self.action_scale * self.actions + self.default_dof_pos
# self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(targets))
def post_physics_step(self):
self.progress_buf += 1
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.compute_observations()
self.compute_reward(self.actions)
def compute_reward(self, actions):
self.rew_buf[:], self.reset_buf[:] = compute_robot_reward(
# tensors
self.root_states,
self.commands,
self.torques,
self.contact_forces,
self.knee_indices,
self.hip_indices,
self.progress_buf,
# Dict
self.rew_scales,
# other
self.base_index,
self.max_episode_length,
)
def compute_observations(self):
self.gym.refresh_dof_state_tensor(self.sim) # done in step
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_net_contact_force_tensor(self.sim)
# self.gym.refresh_dof_force_tensor(self.sim)
self.obs_buf[:] = compute_robot_observations( # tensors
self.root_states,
self.commands,
self.dof_pos,
self.default_dof_pos,
self.dof_vel,
self.gravity_vec,
self.actions,
# scales
self.lin_vel_scale,
self.ang_vel_scale,
self.dof_pos_scale,
self.dof_vel_scale
)
def reset_idx(self, env_ids):
positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device)
velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device)
self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset
self.dof_vel[env_ids] = velocities
env_ids_int32 = env_ids.to(dtype=torch.int32)
if Parameters.bridge_MPC_to_RL:
# *MPC reset
# print(env_ids_int32.cpu())
# torch.cuda.synchronize()
for idx in env_ids_int32.detach().cpu():
self.controllers[idx].reset()
self.gym.set_actor_root_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.initial_root_states),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.gym.set_dof_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.dof_state),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.commands_x[env_ids] = torch_rand_float(self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device).squeeze()
self.commands_y[env_ids] = torch_rand_float(self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device).squeeze()
self.commands_yaw[env_ids] = torch_rand_float(self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device).squeeze()
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 1
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def compute_robot_reward(
# tensors
root_states,
commands,
torques,
contact_forces,
knee_indices,
hip_indices,
episode_lengths,
# Dict
rew_scales,
# other
base_index,
max_episode_length
):
# (reward, reset, feet_in air, feet_air_time, episode sums)
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Dict[str, float], int, int) -> Tuple[Tensor, Tensor]
# prepare quantities (TODO: return from obs ?)
base_quat = root_states[:, 3:7]
base_lin_vel = quat_rotate_inverse(base_quat, root_states[:, 7:10])
base_ang_vel = quat_rotate_inverse(base_quat, root_states[:, 10:13])
# velocity tracking reward
lin_vel_error = torch.sum(torch.square(commands[:, :2] - base_lin_vel[:, :2]), dim=1)
ang_vel_error = torch.square(commands[:, 2] - base_ang_vel[:, 2])
rew_lin_vel_xy = torch.exp(-lin_vel_error/0.25) * rew_scales["lin_vel_xy"]
rew_ang_vel_z = torch.exp(-ang_vel_error/0.25) * rew_scales["ang_vel_z"]
# other base velocity penalties
rew_lin_vel_z = torch.square(base_lin_vel[:, 2]) * rew_scales["lin_vel_z"]
rew_ang_vel_xy = torch.sum(torch.square(base_ang_vel[:, :2]), dim=1) * rew_scales["ang_vel_xy"]
# collision penalty
knee_contact = torch.norm(contact_forces[:, knee_indices, :], dim=2) > 1.
rew_collision = torch.sum(knee_contact, dim=1) * rew_scales["collision"]
# torque penalty
rew_torque = torch.sum(torch.square(torques), dim=1) * rew_scales["torque"]
total_reward = rew_lin_vel_xy + rew_lin_vel_z + rew_ang_vel_xy + rew_ang_vel_z + rew_torque + rew_collision
total_reward = torch.clip(total_reward, 0., None)
# reset agents
reset = torch.norm(contact_forces[:, base_index, :], dim=1) > 1.
reset = reset | torch.any(knee_contact, dim=1)
reset = reset | torch.any(torch.norm(contact_forces[:, hip_indices, :], dim=2) > 1., dim=1)
time_out = episode_lengths > max_episode_length # no terminal reward for time-outs
reset = reset | time_out
return total_reward.detach(), reset
@torch.jit.script
def compute_robot_observations(root_states,
commands,
dof_pos,
default_dof_pos,
dof_vel,
gravity_vec,
actions,
lin_vel_scale,
ang_vel_scale,
dof_pos_scale,
dof_vel_scale
):
#
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, float, float, float) -> Tensor
base_quat = root_states[:, 3:7]
base_pos = root_states[:, 0:3]
base_lin_vel = quat_rotate_inverse(base_quat, root_states[:, 7:10]) * lin_vel_scale
base_ang_vel = quat_rotate_inverse(base_quat, root_states[:, 10:13]) * ang_vel_scale
# projected_gravity = quat_rotate(base_quat, gravity_vec)
dof_pos_scaled = (dof_pos - default_dof_pos) * dof_pos_scale
commands_scaled = commands*torch.tensor([lin_vel_scale, lin_vel_scale, ang_vel_scale], requires_grad=False, device=commands.device)
obs = torch.cat((base_pos,
base_lin_vel,
base_ang_vel,
# projected_gravity,
commands_scaled,
dof_pos_scaled,
dof_vel*dof_vel_scale,
actions
), dim=-1)
return obs