-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathConvexMPCLocomotion.py
378 lines (305 loc) · 17.4 KB
/
ConvexMPCLocomotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# import math
import time
import sys
import numpy as np
# import MPC_Controller.convex_MPC.mpc_osqp as mpc
from MPC_Controller.common.Quadruped import RobotType
from MPC_Controller.Parameters import Parameters
from MPC_Controller.convex_MPC.Gait import OffsetDurationGait
from MPC_Controller.common.DesiredStateCommand import DesiredStateCommand
from MPC_Controller.FSM_states.ControlFSMData import ControlFSMData
from MPC_Controller.common.FootSwingTrajectory import FootSwingTrajectory
from MPC_Controller.utils import CASTING, NUM_LEGS, DTYPE, getSideSign
from MPC_Controller.math_utils.orientation_tools import coordinateRotation, CoordinateAxis
from MPC_Controller.Logger import Logger
try:
import mpc_osqp as mpc
except:
print("You need to install 'rl-mpc-locomotion'")
print("Run 'pip install -e .' in this repo")
sys.exit()
class ConvexMPCLocomotion:
def __init__(self, _dt:float, _iterationsBetweenMPC:int):
self.iterationsBetweenMPC = int(_iterationsBetweenMPC)
self.horizonLength = 10 # a fixed number for all mpc gait
self.dt = _dt
self.trotting = OffsetDurationGait(10,
np.array([0, 5, 5, 0], dtype=DTYPE),
np.array([5, 5, 5, 5], dtype=DTYPE), "Trotting")
self.bounding = OffsetDurationGait(10,
np.array([5, 5, 0, 0], dtype=DTYPE),
np.array([4, 4, 4, 4], dtype=DTYPE), "Bounding")
self.pronking = OffsetDurationGait(10,
np.array([0, 0, 0, 0], dtype=DTYPE),
np.array([4, 4, 4, 4], dtype=DTYPE), "Pronking")
self.pacing = OffsetDurationGait(10,
np.array([5, 0, 5, 0], dtype=DTYPE),
np.array([5, 5, 5, 5], dtype=DTYPE), "Pacing")
self.galloping = OffsetDurationGait(10,
np.array([0, 2, 7, 9], dtype=DTYPE),
np.array([4, 4, 4, 4], dtype=DTYPE), "Galloping")
self.walking = OffsetDurationGait(10,
np.array([0, 3, 5, 8], dtype=DTYPE),
np.array([5, 5, 5, 5], dtype=DTYPE), "Walking")
self.trotRunning = OffsetDurationGait(10,
np.array([0, 5, 5, 0], dtype=DTYPE),
np.array([4, 4, 4, 4], dtype=DTYPE), "Trot Running")
self.dtMPC = self.dt * self.iterationsBetweenMPC
self.default_iterations_between_mpc = self.iterationsBetweenMPC
print("[Convex MPC] dt: %.3f iterations: %d, dtMPC: %.3f" % (self.dt, self.iterationsBetweenMPC, self.dtMPC))
self.firstSwing:list = None
self.firstRun = True
self.iterationCounter = 0
self.pFoot = np.zeros((4,3,1), dtype=DTYPE)
self.f_ff = np.zeros((4,3,1), dtype=DTYPE)
self.foot_positions = np.zeros((4,3,1), dtype=DTYPE)
self.current_gait = 0
self._x_vel_des = 0.0
self._y_vel_des = 0.0
self._yaw_turn_rate = 0.0
self._roll_des = 0.0
self._pitch_des = 0.0
self.footSwingTrajectories = [FootSwingTrajectory() for _ in range(4)]
self.swingTimes = np.zeros((4,1), dtype=DTYPE)
self.swingTimeRemaining = [0.0 for _ in range(4)]
self.Kp = np.array([700, 0, 0, 0, 700, 0, 0, 0, 150], dtype=DTYPE).reshape((3,3))
self.Kd = np.array([7, 0, 0, 0, 7, 0, 0, 0, 7], dtype=DTYPE).reshape((3,3))
self.Kp_stance = np.zeros_like(self.Kp)
self.Kd_stance = self.Kd
self.logger = Logger("logs/")
def initialize(self, data:ControlFSMData):
if Parameters.cmpc_alpha > 1e-4:
print("Alpha was set too high (" + str(Parameters.cmpc_alpha) + ") adjust to 1e-5\n")
Parameters.cmpc_alpha = 1e-5
if Parameters.cmpc_enable_log:
# flush last log
if not self.logger.is_empty():
self.logger.flush_logging()
# start new logs
self.logger.start_logging()
self.iterationCounter = 0
self._cpp_mpc = mpc.ConvexMpc(data._quadruped._bodyMass,
list(data._quadruped._bodyInertia),
NUM_LEGS,
self.horizonLength,
self.dtMPC,
Parameters.cmpc_alpha,
mpc.QPOASES)
self._x_vel_des = 0.0
self._y_vel_des = 0.0
self._yaw_turn_rate = 0.0
self.firstSwing = [True for _ in range(4)]
self.firstRun = True
def recomputerTiming(self, iterations_per_mpc:int):
self.iterationsBetweenMPC = iterations_per_mpc
self.dtMPC = self.dt*iterations_per_mpc
def __SetupCommand(self, data:ControlFSMData):
self._body_height = data._quadruped._bodyHeight
self._x_vel_des = data._desiredStateCommand.x_vel_cmd
self._y_vel_des = data._desiredStateCommand.y_vel_cmd
self._yaw_turn_rate = data._desiredStateCommand.yaw_turn_rate
def solveDenseMPC(self, mpcTable:list, data:ControlFSMData):
seResult = data._stateEstimator.getResult()
# *MPC Weights
if data._desiredStateCommand.mpc_weights is None:
mpc_weight = data._quadruped._mpc_weights
else:
mpc_weight = data._desiredStateCommand.mpc_weights
timer = time.time()
# *Normal Vector of ground
if Parameters.flat_ground:
gravity_projection_vec = np.array([0, 0, 1],dtype=DTYPE)
else:
gravity_projection_vec = seResult.ground_normal_yaw
# *Google's way of states
com_roll_pitch_yaw = seResult.rpyBody.flatten()
# com_roll_pitch_yaw = np.array([seResult.rpyBody[0], seResult.rpyBody[1], 0], dtype=DTYPE)
com_position = seResult.position.flatten()
com_angular_velocity = seResult.omegaBody.flatten()
com_velocity = seResult.vBody.flatten()
desired_com_position = np.array([0., 0., self._body_height], dtype=DTYPE)
desired_com_velocity = np.array([self._x_vel_des, self._y_vel_des, 0], dtype=DTYPE)
desired_com_roll_pitch_yaw = np.zeros(3, dtype=DTYPE) # walk parallel to the ground
desired_com_angular_velocity = np.array([0, 0, self._yaw_turn_rate], dtype=DTYPE)
if Parameters.cmpc_print_states:
print("------------------------------------------")
print("COM RPY: {: .4f}, {: .4f}, {: .4f}".format(*np.rad2deg(com_roll_pitch_yaw)))
print("COM Pos: {: .4f}, {: .4f}, {: .4f}".format(*com_position))
print("COM Ang: {: .4f}, {: .4f}, {: .4f}".format(*com_angular_velocity))
print("COM Vel: {: .4f}, {: .4f}, {: .4f}".format(*com_velocity))
# print("------------------------------------------")
# print("DES RPY: {: .4f}, {: .4f}, {: .4f}".format(*np.rad2deg(desired_com_roll_pitch_yaw)))
# print("DES Pos: {: .4f}, {: .4f}, {: .4f}".format(*desired_com_position))
# print("DES Ang: {: .4f}, {: .4f}, {: .4f}".format(*desired_com_angular_velocity))
# print("DES Vel: {: .4f}, {: .4f}, {: .4f}".format(*desired_com_velocity))
print("------------------------------------------")
print("GND Vec: {: .4f}, {: .4f}, {: .4f}".format(*gravity_projection_vec))
predicted_contact_forces = self._cpp_mpc.compute_contact_forces(
mpc_weight, # mpc weights list(12,)
com_position, # com_position (set x y to 0.0)
com_velocity, # com_velocity
com_roll_pitch_yaw, # com_roll_pitch_yaw (set yaw to 0.0)
gravity_projection_vec, # Normal Vector of ground
com_angular_velocity, # com_angular_velocity
np.asarray(mpcTable, dtype=DTYPE), # Foot contact states
np.array(self.foot_positions.flatten(), dtype=DTYPE), # foot_positions_base_frame
data._quadruped._friction_coeffs, # foot_friction_coeffs
desired_com_position, # desired_com_position
desired_com_velocity, # desired_com_velocity
desired_com_roll_pitch_yaw, # desired_com_roll_pitch_yaw
desired_com_angular_velocity # desired_com_angular_velocity
)
for leg in range(4):
self.f_ff[leg] = np.array(predicted_contact_forces[leg*3: (leg+1)*3],dtype=DTYPE).reshape((3,1))
if Parameters.cmpc_print_update_time:
print("MPC Update Time %.3f s\n"%(time.time()-timer))
if Parameters.cmpc_enable_log:
mpc_state_loss = (com_roll_pitch_yaw - desired_com_roll_pitch_yaw).dot(mpc_weight[0:3]) + \
(com_position - desired_com_position).dot(mpc_weight[3:6]) + \
(com_angular_velocity - desired_com_velocity).dot(mpc_weight[6:9]) + \
(com_velocity - desired_com_velocity).dot(mpc_weight[9:12])
mpc_torque_loss = Parameters.cmpc_alpha * np.sum(predicted_contact_forces[:12])
log_data_frame = dict(
COM_RPY = com_roll_pitch_yaw, # COM_RPY
COM_POS = com_position, # COM_POS
COM_ANG = com_angular_velocity, # COM_ANG
COM_VEL = com_velocity, # COM_VEL
DES_RPY = desired_com_roll_pitch_yaw, # DES_RPY
DES_POS = desired_com_position, # DES_POS
DES_ANG = desired_com_angular_velocity, # DES_ANG
DES_VEL = desired_com_velocity, # DES_VEL
MPC_GRF = predicted_contact_forces[:12], # MPC_GRF
MPC_LOS = mpc_state_loss+mpc_torque_loss, # MPC_LOS
MPC_WEI = mpc_weight, # MPC_WEI
TIM_STA = self.iterationCounter # TIM_STA
)
self.logger.update_logging(log_data_frame)
def updateMPCIfNeeded(self, mpcTable:list, data:ControlFSMData):
# self.solveDenseMPC(mpcTable, data)
if(self.iterationCounter%self.iterationsBetweenMPC)==0:
self.solveDenseMPC(mpcTable, data)
def run(self, data:ControlFSMData):
# Command Setup
self.__SetupCommand(data)
gaitNumber = Parameters.cmpc_gait.value
seResult = data._stateEstimator.getResult()
# pick gait
gait = self.trotting
if gaitNumber == 1:
gait = self.bounding
elif gaitNumber == 2:
gait = self.pronking
elif gaitNumber == 3:
gait = self.pacing
elif gaitNumber == 5:
gait = self.galloping
elif gaitNumber == 6:
gait = self.walking
elif gaitNumber == 7:
gait = self.trotRunning
self.current_gait = gaitNumber
gait.setIterations(self.iterationsBetweenMPC, self.iterationCounter)
self.recomputerTiming(self.default_iterations_between_mpc)
for i in range(4):
self.foot_positions[i] = data._quadruped.getHipLocation(i) + data._legController.datas[i].p
self.pFoot[i] = self.foot_positions[i] + seResult.position
# np.copyto(self.pFoot[i], seResult.position + \
# (data._quadruped.getHipLocation(i)+
# data._legController.datas[i].p))
# self.foot_positions = np.array([self.pFoot[i] - seResult.position for i in range(4)], dtype=DTYPE).reshape((4,3,1))
# * first time initialization
if self.firstRun:
self.firstRun = False
data._stateEstimator._init_contact_history(self.foot_positions)
for i in range(4):
self.footSwingTrajectories[i].setHeight(0.05)
self.footSwingTrajectories[i].setInitialPosition(self.pFoot[i])
self.footSwingTrajectories[i].setFinalPosition(self.pFoot[i])
if Parameters.flat_ground:
data._stateEstimator._update_com_position_ground_frame(self.foot_positions)
else:
data._stateEstimator._compute_ground_normal_and_com_position(self.foot_positions)
# * foot placement
for l in range(4):
self.swingTimes[l] = gait.getCurrentSwingTime(self.dtMPC, l)
v_des_robot = np.array([self._x_vel_des, self._y_vel_des, 0], dtype=DTYPE).reshape((3,1))
# interleave_y = [0.08, -0.08, -0.02, 0.02]
# interleave_gain = -0.2
# v_abs = math.fabs(v_des_robot[0])
for i in range(4):
if self.firstSwing[i]:
self.swingTimeRemaining[i] = self.swingTimes[i].item()
else:
self.swingTimeRemaining[i] -= self.dt
# self.footSwingTrajectories[i].setHeight(0.2)
self.footSwingTrajectories[i].setHeight(self._body_height/3)
offset = np.array([0, getSideSign(i)*data._quadruped._abadLinkLength, 0], dtype=DTYPE).reshape((3,1))
pRobotFrame = data._quadruped.getHipLocation(i) + offset
# pRobotFrame[1] += interleave_y[i] * v_abs * interleave_gain
stance_time = gait.getCurrentStanceTime(self.dtMPC, i)
pYawCorrected = coordinateRotation(CoordinateAxis.Z, -self._yaw_turn_rate*stance_time/2) @ pRobotFrame
Pf = seResult.position + (pYawCorrected + v_des_robot * self.swingTimeRemaining[i])
p_rel_max = 0.3
pfx_rel = seResult.vBody[0] * (0.5 + Parameters.cmpc_bonus_swing) * stance_time + \
0.03 * (seResult.vBody[0] - v_des_robot[0]) + \
(0.5 * seResult.position[2] / 9.81) * (seResult.vBody[1] * self._yaw_turn_rate)
pfy_rel = seResult.vBody[1] * 0.5 * stance_time * self.dtMPC + \
0.03 * (seResult.vBody[1] - v_des_robot[1]) + \
(0.5 * seResult.position[2] / 9.81) * (-seResult.vBody[0] * self._yaw_turn_rate)
pfx_rel = min(max(pfx_rel, -p_rel_max), p_rel_max)
pfy_rel = min(max(pfy_rel, -p_rel_max), p_rel_max)
Pf[0] += pfx_rel
Pf[1] += pfy_rel
Pf[2] = -0.003
self.footSwingTrajectories[i].setFinalPosition(Pf)
# calc gait
self.iterationCounter += 1
# gait
contactStates = gait.getContactState()
swingStates = gait.getSwingState()
mpcTable = gait.getMpcTable()
# * update MPC
self.updateMPCIfNeeded(mpcTable, data)
se_contactState = np.array([0,0,0,0], dtype=DTYPE).reshape((4,1))
for foot in range(4):
contactState = contactStates[foot]
swingState = swingStates[foot]
if swingState > 0: #* foot is in swing
if self.firstSwing[foot]:
self.firstSwing[foot] = False
self.footSwingTrajectories[foot].setInitialPosition(self.pFoot[foot])
self.footSwingTrajectories[foot].computeSwingTrajectoryBezier(swingState, self.swingTimes[foot].item())
pDesFoot = self.footSwingTrajectories[foot].getPosition()
vDesFoot = self.footSwingTrajectories[foot].getVelocity()
pDesLeg = (pDesFoot - seResult.position) \
- data._quadruped.getHipLocation(foot)
vDesLeg = (vDesFoot - seResult.vBody)
# data._legController.commands[foot].pDes = pDesLeg
# data._legController.commands[foot].vDes = vDesLeg
# data._legController.commands[foot].kpCartesian = self.Kp
# data._legController.commands[foot].kdCartesian = self.Kd
np.copyto(data._legController.commands[foot].pDes, pDesLeg, casting=CASTING)
np.copyto(data._legController.commands[foot].vDes, vDesLeg, casting=CASTING)
np.copyto(data._legController.commands[foot].kpCartesian, self.Kp, casting=CASTING)
np.copyto(data._legController.commands[foot].kdCartesian, self.Kd, casting=CASTING)
else: #* foot is in stance
self.firstSwing[foot] = True
pDesFoot = self.footSwingTrajectories[foot].getPosition()
vDesFoot = self.footSwingTrajectories[foot].getVelocity()
pDesLeg = (pDesFoot - seResult.position) \
- data._quadruped.getHipLocation(foot)
vDesLeg = (vDesFoot - seResult.vBody)
# data._legController.commands[foot].pDes = pDesLeg
# data._legController.commands[foot].vDes = vDesLeg
# data._legController.commands[foot].kpCartesian = self.Kp_stance
# data._legController.commands[foot].kdCartesian = self.Kd_stance
# data._legController.commands[foot].forceFeedForward = self.f_ff[foot]
# data._legController.commands[foot].kdJoint = np.identity(3, dtype=DTYPE)*0.2
np.copyto(data._legController.commands[foot].pDes, pDesLeg, casting=CASTING)
np.copyto(data._legController.commands[foot].vDes, vDesLeg, casting=CASTING)
np.copyto(data._legController.commands[foot].kpCartesian, self.Kp_stance, casting=CASTING)
np.copyto(data._legController.commands[foot].kdCartesian, self.Kd_stance, casting=CASTING)
np.copyto(data._legController.commands[foot].forceFeedForward, self.f_ff[foot], casting=CASTING)
np.copyto(data._legController.commands[foot].kdJoint, np.identity(3, dtype=DTYPE)*0.2, casting=CASTING)
se_contactState[foot] = contactState
data._stateEstimator.setContactPhase(se_contactState)