-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathLegController.py
171 lines (133 loc) · 5.6 KB
/
LegController.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import math
import numpy as np
from math import sin, cos
from MPC_Controller.Parameters import Parameters
from MPC_Controller.common.Quadruped import Quadruped
from MPC_Controller.utils import DTYPE, getSideSign
class LegControllerCommand:
def __init__(self):
self.tauFeedForward = np.zeros((3,1), dtype=DTYPE)
self.forceFeedForward = np.zeros((3,1), dtype=DTYPE)
self.qDes = np.zeros((3,1), dtype=DTYPE)
self.qdDes = np.zeros((3,1), dtype=DTYPE)
self.pDes = np.zeros((3,1), dtype=DTYPE)
self.vDes = np.zeros((3,1), dtype=DTYPE)
self.kpCartesian = np.zeros((3,3), dtype=DTYPE)
self.kdCartesian = np.zeros((3,3), dtype=DTYPE)
self.kpJoint = np.zeros((3,3), dtype=DTYPE)
self.kdJoint = np.zeros((3,3), dtype=DTYPE)
def zero(self):
"""
Zero the leg command so the leg will not output torque
"""
self.tauFeedForward.fill(0)
self.forceFeedForward.fill(0)
self.qDes.fill(0)
self.qdDes.fill(0)
self.pDes.fill(0)
self.vDes.fill(0)
self.kpCartesian.fill(0)
self.kdCartesian.fill(0)
self.kpJoint.fill(0)
self.kdJoint.fill(0)
class LegControllerData:
def __init__(self):
self.q = np.zeros((3,1), dtype=DTYPE)
self.qd = np.zeros((3,1), dtype=DTYPE)
self.p = np.zeros((3,1), dtype=DTYPE)
self.v = np.zeros((3,1), dtype=DTYPE)
self.J = np.zeros((3,3), dtype=DTYPE)
# self.tauEstimate = np.zeros((3,1), dtype=DTYPE)
def zero(self):
self.q.fill(0)
self.qd.fill(0)
self.p.fill(0)
self.v.fill(0)
self.J.fill(0)
# self.tauEstimate.fill(0)
def setQuadruped(self, quad:Quadruped):
self.quadruped = quad
class LegController:
def __init__(self, quad:Quadruped):
self.commands = [LegControllerCommand() for _ in range(4)]
self.datas = [LegControllerData() for _ in range(4)]
# self._legsEnabled = False
self._maxTorque = 0.0
self._quadruped = quad
for data in self.datas:
data.setQuadruped(self._quadruped)
def zeroCommand(self):
"""
Zero all leg commands. This should be run *before* any control code, so if
the control code is confused and doesn't change the leg command, the legs
won't remember the last command.
"""
for cmd in self.commands:
cmd.zero()
def setMaxTorque(self, tau:float):
self._maxTorque = tau
def updateData(self, dof_states):
"""
update leg data from simulator
"""
# ! update q, qd, J, p and v here
for leg in range(4):
# q and qd
if Parameters.bridge_MPC_to_RL:
self.datas[leg].q[:, 0] = dof_states[3*leg:3*(leg+1), 0]
self.datas[leg].qd[:, 0] = dof_states[3*leg:3*(leg+1), 1]
else:
self.datas[leg].q[:, 0] = dof_states["pos"][3*leg:3*(leg+1)]
self.datas[leg].qd[:, 0] = dof_states["vel"][3*leg:3*(leg+1)]
# J and p
self.computeLegJacobianAndPosition(leg)
# v
self.datas[leg].v = self.datas[leg].J @ self.datas[leg].qd
def updateCommand(self): # , gym, env, actor):
"""
update leg commands for simulator
"""
# ! update joint PD gain, leg enable, feedforward torque and estimate torque
legTorques = np.zeros(12, dtype=DTYPE)
for leg in range(4):
# MPC -> f_ff -R^T-> forceFeedForward
# force feedforward + cartesian PD
footForce = self.commands[leg].forceFeedForward \
+ self.commands[leg].kpCartesian @ (self.commands[leg].pDes - self.datas[leg].p) \
+ self.commands[leg].kdCartesian @ (self.commands[leg].vDes - self.datas[leg].v)
# tau feedforward + torque
legTorque = self.commands[leg].tauFeedForward + self.datas[leg].J.T @ footForce
# joint PD control
legTorque += self.commands[leg].kpJoint @ (self.commands[leg].qDes - self.datas[leg].q)
legTorque += self.commands[leg].kdJoint @ (self.commands[leg].qdDes - self.datas[leg].qd)
legTorques[leg*3:(leg+1)*3] = legTorque.flatten()
# print("leg 0 effort %.3f %.3f %.3f"%(legTorques[0], legTorques[1], legTorques[2]))
return legTorques
def computeLegJacobianAndPosition(self, leg:int):
"""
return J and p
"""
dy = self._quadruped._abadLinkLength * getSideSign(leg)
dz1 = -self._quadruped._hipLinkLength
dz2 = -self._quadruped._kneeLinkLength
q = self.datas[leg].q
s1 = sin(q[0])
s2 = sin(q[1])
s3 = sin(q[2])
c1 = cos(q[0])
c2 = cos(q[1])
c3 = cos(q[2])
c23 = c2 * c3 - s2 * s3
s23 = s2 * c3 + c2 * s3
self.datas[leg].p[0] = dz2 * s23 + dz1 * s2
self.datas[leg].p[1] = dy * c1 - dz1 * c2 * s1 - dz2 * s1 * c23
self.datas[leg].p[2] = dy * s1 + dz1 * c1 * c2 + dz2 * c1 * c23
self.datas[leg].J[0, 0] = 0.0
self.datas[leg].J[1, 0] = - dy * s1 - dz2 * c1 * c23 - dz1 * c1 * c2
self.datas[leg].J[2, 0] = - dz2 * s1 * c23 + dy * c1 - dz1 * c2 * s1
self.datas[leg].J[0, 1] = dz2 * c23 + dz1 * c2
self.datas[leg].J[1, 1] = dz2 * s1 * s23 + dz1 * s1 * s2
self.datas[leg].J[2, 1] = - dz2 * c1 * s23 - dz1 * c1 * s2
self.datas[leg].J[0, 2] = dz2 * c23
self.datas[leg].J[1, 2] = dz2 * s1 * s23
self.datas[leg].J[2, 2] = - dz2 * c1 * s23