-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCont_Monad_Algebra.thy
181 lines (106 loc) · 6.78 KB
/
Cont_Monad_Algebra.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
theory Cont_Monad_Algebra
imports "algebra/rg-algebra/AbstractAtomicTest/Constrained_Atomic_Commands" "HOL-Library.Monad_Syntax"
begin
definition bindCont :: "(('a \<Rightarrow> 'r) \<Rightarrow> 'r) \<Rightarrow> ('a \<Rightarrow> ('b \<Rightarrow> 'r) \<Rightarrow> 'r) \<Rightarrow> ('b \<Rightarrow> 'r) \<Rightarrow> 'r" (infixl "\<bind>" 54)
where
"bindCont (f :: ('a \<Rightarrow> 'r) \<Rightarrow> 'r) (g :: 'a \<Rightarrow> ('b \<Rightarrow> 'r) \<Rightarrow> 'r) \<equiv> \<lambda>(c :: ('b \<Rightarrow> 'r)). f (\<lambda>a. g a c) :: 'r"
definition "return a f = f a"
type_synonym ('a, 'r) cont = "('a \<Rightarrow> 'r) \<Rightarrow> 'r"
type_notation cont (infixr "\<leadsto>" 10)
definition callCC :: "(('a \<Rightarrow> ('b, 'r) cont) \<Rightarrow> ('a, 'r) cont) \<Rightarrow> ('a, 'r) cont"
where "callCC f \<equiv> \<lambda>cc. f (\<lambda>a _. cc a) cc "
definition liftM :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'r) cont \<Rightarrow> ('b, 'r) cont" (infixl "<$>" 50) where
"liftM f m = bindCont m (return o f)"
definition k_comp :: "('a \<Rightarrow> ('b, 'r) cont) => ('b \<Rightarrow> ('c, 'r) cont) => ('a \<Rightarrow> ('c, 'r) cont)" where
"k_comp f g \<equiv> \<lambda>a. bindCont (f a) g"
definition foldrM :: "('a \<Rightarrow> 'b \<Rightarrow> ('b, 'r) cont) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> ('b, 'r) cont" where
"foldrM f xs = foldr (k_comp) (map f xs) (return)"
adhoc_overloading bind bindCont
primrec mapM :: "('a \<Rightarrow> ('b, 'r) cont) \<Rightarrow> 'a list \<Rightarrow> ('b list, 'r) cont" where
"mapM f (x#xs) = do {a <- f x ; b <- mapM f xs; return (a # b)} " |
"mapM f [] = return []"
definition ifM :: "(bool, 'a) cont \<Rightarrow> ('b, 'a) cont \<Rightarrow> ('b, 'a) cont \<Rightarrow> ('b, 'a) cont"
where "ifM b m m'=
do {c <- b;
if c then m else m'}"
lemma bindCont_return: "bindCont f return = f"
by (intro ext; clarsimp simp: bindCont_def return_def)
lemma bindCont_return': "bindCont (return a) f = f a"
by (intro ext; clarsimp simp: bindCont_def return_def)
lemma kcomp_assoc: "k_comp (k_comp f g) h = k_comp f (k_comp g h)"
by (intro ext; clarsimp simp: k_comp_def bindCont_def return_def)
context constrained_atomic begin
definition "select S f \<equiv> \<Squnion>x\<in>S. f x"
definition "angel S f \<equiv> \<Sqinter>x\<in>S. f x"
definition "getState f \<equiv> (\<Squnion>a. \<tau> {a} ; f a) "
definition "setState s f \<equiv> (\<pi> (UNIV \<triangleright> {s}) ; f () )"
definition "modifyState f = do { a <- (getState); (setState (f a))}"
definition "fail f = \<top> "
definition "todo f = \<bottom> "
definition flatten :: "(('b, 'a) cont, 'a) cont \<Rightarrow> ('b, 'a) cont" where
"flatten f = bindCont f id"
term "lfp (flatten o liftM (f :: ('b => ('b, 'a) cont))) "
definition "thendo f g = bindCont f (\<lambda>_. g)"
definition loop :: "('b => ('b, 'a) cont) \<Rightarrow> ('b, 'a) cont "
where "loop f = lfp (\<lambda>y. bindCont y f )"
definition whileStep :: "(bool, 'a) cont \<Rightarrow> ('b, 'a) cont \<Rightarrow> (unit, 'a) cont" where
"whileStep b m = ifM b (thendo m (return ())) (return ())"
(* definition while :: "(bool, 'a) cont \<Rightarrow> ('b, 'a) cont \<Rightarrow> (unit, 'a) cont"
where "while b m = loop (\<lambda>_. whileStep b m )" *)
definition "run f = (f (\<lambda>_. nil))"
definition "check f x = f (\<lambda>P. if P then x else nil)"
definition while' :: "(bool, 'a) cont \<Rightarrow> ('b, 'a) cont \<Rightarrow> (unit, 'a) cont"
where "while' b m = (\<lambda>f. iter (run m); bindCont b (\<lambda>c g. if c then f () else \<bottom>) f)"
lemma kcomp_assoc: "k_comp (k_comp f g) h = k_comp f (k_comp g h)"
by (intro ext; clarsimp simp: k_comp_def bindCont_def return_def)
definition "assertion P = do {a <- getState; (if (P a) then return () else fail)}"
definition "test_state P = do {a <- getState; return (P a)}"
definition inc :: "(nat \<Rightarrow> nat option) \<Rightarrow> (nat \<Rightarrow> nat option)"
where "inc s = s (0 \<mapsto> 0 + 1)"
definition "pointless s = do {x <- getState;
setState s;
return x}"
lemma test_split: "\<tau> P = (\<Squnion>x\<in>P. \<tau> {x})"
apply (subst UN_singleton[symmetric])
apply (subst test_Sup, clarsimp)
by (simp add: image_image)
lemma SUP_eq_if:"(\<Squnion>x\<in>P. f x) = (\<Squnion>(x). if (x \<in> P) then ((f x) :: 'e :: complete_lattice) else \<bottom>)"
apply (rule antisym)
apply (smt (verit, best) SUP_subset_mono order_class.order_eq_iff subset_UNIV)
by (smt (verit) SUP_empty SUP_least Sup_upper empty_iff image_eqI)
lemma in_dom_iff: "x \<in> A \<triangleleft> R \<longleftrightarrow> fst x \<in> A \<and> x \<in> R"
by (clarsimp simp: restrict_domain_def split: prod.splits)
lemma in_ran_iff: "x \<in> R \<triangleright> A \<longleftrightarrow> snd x \<in> A \<and> x \<in> R"
apply (clarsimp simp: restrict_range_def split: prod.splits)
by (safe)
lemma is_id: "{x} \<triangleleft> (UNIV \<triangleright> {x}) = {(x,x)}"
by (rule set_eqI; clarsimp simp: in_dom_iff in_ran_iff Id_on_iff)
lemma "run (assertion (\<lambda>_. False)) = \<top>"
apply (clarsimp simp: modifyState_def assertion_def fail_def run_def bindCont_def getState_def setState_def pgm_test_pre is_id)
apply (rule antisym)
apply (subst Sup_le_iff; clarsimp)
by (metis NONDET_seq_distrib Nondet_test_nil order_top_class.top_greatest seq_nil_left)
definition "compact c \<longleftrightarrow> (\<forall>S. S \<noteq> {} \<longrightarrow> c \<le> \<Squnion> S \<longrightarrow> (\<exists>s\<in>S. c \<le> s))"
lemma foldrM_empty[simp]: "foldrM f [] x = return (x)" by (clarsimp simp: foldrM_def)
lemma foldrM_cons: "foldrM f (x # xs) v = do {y <- f x v; foldrM f xs y}"
by (clarsimp simp: foldrM_def k_comp_def)
lemmas bind_assoc = kcomp_assoc[simplified k_comp_def]
lemma bindCont_assoc: "bindCont f (\<lambda>a. bindCont (g a) h) = bindCont (bindCont f g) h"
by (clarsimp simp: bindCont_def)
lemma foldrM_append: "foldrM f (xs@ys) n = do {v <- foldrM f (xs) n; foldrM f ys v}"
apply (induct xs arbitrary: n; clarsimp simp: bindCont_return bindCont_return')
apply (clarsimp simp: foldrM_cons bindCont_return bindCont_return' )
by (simp add: bindCont_assoc bindCont_return bindCont_return')
lemma bindCont_right_eqI: "(\<And>x. c x = d x) \<Longrightarrow> bindCont f c = (bindCont f d)"
apply (intro ext; clarsimp simp: bindCont_def)
done
lemma bindCont_fail_absorb [simp]: "(bindCont fail c) = fail"
apply (clarsimp simp: bindCont_def fail_def)
apply (rule ext)
apply (clarsimp simp: fail_def)
done
lemma fail_absorb_left[simp]: " (bindCont fail c) = fail"
by (intro ext; clarsimp simp: fail_def bindCont_def)
lemma algebraic: "(x :: 'a) = \<Squnion>{y. y \<le> x \<and> compact y}" sorry
end
end