-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathsgemm.cu
168 lines (144 loc) · 5.6 KB
/
sgemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iostream>
#include <runner.cuh>
#include <vector>
#define cudaCheck(err) (cudaCheck(err, __FILE__, __LINE__))
const std::string errLogFile = "matrixValidationFailure.txt";
int main(int argc, char **argv) {
if (argc != 2) {
std::cerr << "Please select a kernel (range 0 - 12, 0 for NVIDIA cuBLAS)"
<< std::endl;
exit(EXIT_FAILURE);
}
// get kernel number
int kernel_num = std::stoi(argv[1]);
if (kernel_num < 0 || kernel_num > 12) {
std::cerr << "Please enter a valid kernel number (0-12)" << std::endl;
exit(EXIT_FAILURE);
}
// get environment variable for device
int deviceIdx = 0;
if (getenv("DEVICE") != NULL) {
deviceIdx = atoi(getenv("DEVICE"));
}
cudaCheck(cudaSetDevice(deviceIdx));
printf("Running kernel %d on device %d.\n", kernel_num, deviceIdx);
// print some device info
// CudaDeviceInfo();
// Declare the handle, create the handle, cublasCreate will return a value of
// type cublasStatus_t to determine whether the handle was created
// successfully (the value is 0)
cublasHandle_t handle;
if (cublasCreate(&handle)) {
std::cerr << "Create cublas handle error." << std::endl;
exit(EXIT_FAILURE);
};
// Using cudaEvent for gpu stream timing, cudaEvent is equivalent to
// publishing event tasks in the target stream
float elapsed_time;
cudaEvent_t beg, end;
cudaEventCreate(&beg);
cudaEventCreate(&end);
// cuBLAS FLOPs ceiling is reached at 8192
std::vector<int> SIZE = {128, 256, 512, 1024, 2048, 4096};
long m, n, k, max_size;
max_size = SIZE[SIZE.size() - 1];
std::cout << "Max size: " << max_size << std::endl;
float alpha = 0.5, beta = 3.0; // GEMM input parameters, C=α*AB+β*C
float *A = nullptr, *B = nullptr, *C = nullptr,
*C_ref = nullptr; // host matrices
float *dA = nullptr, *dB = nullptr, *dC = nullptr,
*dC_ref = nullptr; // device matrices
A = (float *)malloc(sizeof(float) * max_size * max_size);
B = (float *)malloc(sizeof(float) * max_size * max_size);
C = (float *)malloc(sizeof(float) * max_size * max_size);
C_ref = (float *)malloc(sizeof(float) * max_size * max_size);
randomize_matrix(A, max_size * max_size);
randomize_matrix(B, max_size * max_size);
randomize_matrix(C, max_size * max_size);
cudaCheck(cudaMalloc((void **)&dA, sizeof(float) * max_size * max_size));
cudaCheck(cudaMalloc((void **)&dB, sizeof(float) * max_size * max_size));
cudaCheck(cudaMalloc((void **)&dC, sizeof(float) * max_size * max_size));
cudaCheck(cudaMalloc((void **)&dC_ref, sizeof(float) * max_size * max_size));
cudaCheck(cudaMemcpy(dA, A, sizeof(float) * max_size * max_size,
cudaMemcpyHostToDevice));
cudaCheck(cudaMemcpy(dB, B, sizeof(float) * max_size * max_size,
cudaMemcpyHostToDevice));
cudaCheck(cudaMemcpy(dC, C, sizeof(float) * max_size * max_size,
cudaMemcpyHostToDevice));
cudaCheck(cudaMemcpy(dC_ref, C, sizeof(float) * max_size * max_size,
cudaMemcpyHostToDevice));
int repeat_times = 50;
for (int size : SIZE) {
m = n = k = size;
std::cout << "dimensions(m=n=k) " << m << ", alpha: " << alpha
<< ", beta: " << beta << std::endl;
// Verify the correctness of the calculation, and execute it once before the
// kernel function timing to avoid cold start errors
if (kernel_num != 0) {
run_kernel(0, m, n, k, alpha, dA, dB, beta, dC_ref,
handle); // cuBLAS
run_kernel(kernel_num, m, n, k, alpha, dA, dB, beta, dC,
handle); // Executes the kernel, modifies the result matrix
cudaCheck(cudaDeviceSynchronize());
cudaCheck(cudaGetLastError()); // Check for async errors during kernel run
cudaMemcpy(C, dC, sizeof(float) * m * n, cudaMemcpyDeviceToHost);
cudaMemcpy(C_ref, dC_ref, sizeof(float) * m * n, cudaMemcpyDeviceToHost);
if (!verify_matrix(C_ref, C, m * n)) {
std::cout
<< "Failed to pass the correctness verification against NVIDIA "
"cuBLAS."
<< std::endl;
if (m <= 128) {
std::cout << " Logging faulty output into " << errLogFile << "\n";
std::ofstream fs;
fs.open(errLogFile);
fs << "A:\n";
print_matrix(A, m, n, fs);
fs << "B:\n";
print_matrix(B, m, n, fs);
fs << "C:\n";
print_matrix(C, m, n, fs);
fs << "Should:\n";
print_matrix(C_ref, m, n, fs);
}
exit(EXIT_FAILURE);
}
}
cudaEventRecord(beg);
for (int j = 0; j < repeat_times; j++) {
// We don't reset dC between runs to save time
run_kernel(kernel_num, m, n, k, alpha, dA, dB, beta, dC, handle);
}
cudaEventRecord(end);
cudaEventSynchronize(beg);
cudaEventSynchronize(end);
cudaEventElapsedTime(&elapsed_time, beg, end);
elapsed_time /= 1000.; // Convert to seconds
long flops = 2 * m * n * k;
printf(
"Average elapsed time: (%7.6f) s, performance: (%7.1f) GFLOPS. size: "
"(%ld).\n",
elapsed_time / repeat_times,
(repeat_times * flops * 1e-9) / elapsed_time, m);
fflush(stdout);
// make dC and dC_ref equal again (we modified dC while calling our kernel
// for benchmarking)
cudaCheck(cudaMemcpy(dC, dC_ref, sizeof(float) * m * n,
cudaMemcpyDeviceToDevice));
}
// Free up CPU and GPU space
free(A);
free(B);
free(C);
free(C_ref);
cudaFree(dA);
cudaFree(dB);
cudaFree(dC);
cudaFree(dC_ref);
cublasDestroy(handle);
return 0;
};