-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpos_recovery.py
48 lines (39 loc) · 1.41 KB
/
pos_recovery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from scipy.spatial.distance import pdist, squareform
import matplotlib.pyplot as plt
def compute_pos(dist, dim=2):
"""
This function computes the positions of points in space from their distance matrix.
https://math.stackexchange.com/questions/156161/finding-the-coordinates-of-points-from-distance-matrix
:param dist: is a square distance matrix
:param dim: dimention of the coord system
:return: returns points coordinates
"""
d1j2 = np.expand_dims(np.square(dist[0, :]), 0)
di12 = np.expand_dims(np.square(dist[:, 0]), 1)
dij2 = np.square(dist)
M = (d1j2 + di12 - dij2)/2
S, U = np.linalg.eig(M)
return U * np.sqrt(S)
"""Test position calculator"""
points = np.arange(0, 20).reshape((10, 2))
points += np.random.randint(0, 5, (10, 2))
points = np.array([[0, 0], [0, 20], [10, 0], [10, 20], [20, 0], [20, 20]])
#points = np.random.randint(0, 20, (10, 2))
test_dists = squareform(pdist(points))
positions = np.real(compute_pos(test_dists))
#remove nan columns
positions = positions[:,~np.all(np.isnan(positions), axis=0)]
std_in_pos = np.nanstd(positions, 0)
sort_index = np.argsort(std_in_pos)[-2:]
fig = plt.figure()
plt.subplot(211)
plt.scatter(positions[:, sort_index[0]], positions[:, sort_index[1]])
#plt.xlim(-20, 20)
#plt.ylim(-20, 20)
plt.subplot(212)
plt.scatter(points[:, 0], points[:, 1])
#plt.xlim(-20, 20)
#plt.ylim(-20, 20)
plt.show()
print("done")