🔨 Under Construction 🚧
-->-->-->-->->->->->-------<-<-<--<-<--<-<--<--
▗▄▄▖ ▗▄▄▄▖ ▗▖ ▗▖ ▗▄▄▖ ▗▄▄▖ ▗▄▄▖
▐▌ ▐▌ ▐▌ ▐▛▚▖▐▌ ▐▌ ▐▌ ▐▌ ▐▌ ▐▌
▐▛▀▘ ▐▛▀▀▘ ▐▌ ▝▜▌ ▐▛▀▘ ▐▛▀▚▖ ▝▀▚▖
▐▌ ▐▙▄▄▖ ▐▌ ▐▌ ▐▌ ▐▌ ▐▌ ▗▄▄▞▘
Penalized Regression for Polygenic Risk Scores
Version: 0.0.1 | Release date: January 2025
Authors: Shadi Zabad & Jack Song
McGill University
-->-->-->-->->->->->-------<-<-<--<-<--<-<--<--
To install the package from GitHub
, use the following command:
pip install git+https://github.com/shz9/penprs.git
import magenpy as mgp
from penprs.model.Lasso import Lasso
# Load the data
gdl = mgp.GWADataLoader(mgp.tgp_eur_data_path(),
sumstats_files=mgp.ukb_height_sumstats_path(),
sumstats_format="fastgwa")
# Compute LD matrix:
ld_block_url = "https://bitbucket.org/nygcresearch/ldetect-data/raw/ac125e47bf7ff3e90be31f278a7b6a61daaba0dc/EUR/fourier_ls-all.bed"
gdl.compute_ld('block',
ld_blocks_file=ld_block_url,
dtype='int16',
compute_spectral_properties=True,
output_dir='temp/block_ld/')
# Initialize Lasso model:
lasso_model = Lasso(gdl, lam=100)
# Perform model fit:
lasso_model.fit()
If you use this package in your research, please cite the following paper:
@article {Song2025.01.28.25321292,
author = {Song, Junyi and Zabad, Shadi and Yang, Archer and Li, Yue},
title = {Sparse Polygenic Risk Score Inference with the Spike-and-Slab LASSO},
elocation-id = {2025.01.28.25321292},
year = {2025},
doi = {10.1101/2025.01.28.25321292},
publisher = {Cold Spring Harbor Laboratory Press},
URL = {https://www.medrxiv.org/content/early/2025/01/29/2025.01.28.25321292},
eprint = {https://www.medrxiv.org/content/early/2025/01/29/2025.01.28.25321292.full.pdf},
journal = {medRxiv}
}