-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise.py
91 lines (79 loc) · 2.73 KB
/
exercise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import csv
import numpy as np
from numpy import loadtxt
from urllib.request import urlopen
from pandas import read_csv
from pandas import set_option
from matplotlib import pyplot
#names = ['plas','pres','skin','test','mass','pedi','age','class']
filename = 'pima-indians-diabetes.csv'
data = read_csv(filename,index_col=0)
def load_csv():
filename = 'pima-indians-diabetes.data.csv' # contains only properties
raw_data = open(filename,'r')
reader = csv.reader(raw_data, delimiter=',',quoting=csv.QUOTE_NONE)
x = list(reader)
data = numpy.array(x).astype('float')
print(data.shape)
def load_csv_np():
# filename = 'pima-indians-diabetes.csv'
raw_data = open(filename,'r')
data = loadtxt(raw_data,delimiter=',')
print(data)
print(data.shape)
def load_csv_np_url():
url = 'https://goo.gl/vhm1eU'
raw_data = urlopen(url)
dataset = loadtxt(raw_data,delimiter=',')
print(dataset.shape)
def load_csv_pd():
# filename = 'pima-indians-diabetes.csv'
names = ['preg','plas','pres','skin','test','mass','pedi','age','class']
data = read_csv(filename,names=names)
print(data.shape)
def load_csv_pd_url():
url = 'https://goo.gl/vhm1eU'
names = ['preg','plas','pres','skin','test','mass','pedi','age','class']
data = read_csv(url,names=names)
# data = read_csv(url, header=None)
data.to_csv('pima-indians-diabetes.csv') # storing data to csv file
print(data.shape)
def print_csv():
names = ['preg','plas','pres','skin','test','mass','pedi','age','class']
data = read_csv(filename,names=names)
#data = read_csv(filename, index_col=0)
peek = data.head(20)
print(peek)
types = data.dtypes
print(types)
print(data.shape)
def des_csv():
# names = ['preg','plas','pres','skin','test','mass','pedi','age','class']
# data = read_csv(filename,names=names, index_col=0)
data = read_csv(filename, index_col=0)
#set_option('display.width',100)
#set_option('precision',3)
desc = data.describe()
print(desc)
def dis_csv():
data = read_csv(filename, index_col=0)
class_counts = data.groupby('class').size()
print(class_counts)
def corr_csv():
data = read_csv(filename, index_col=0)
set_option('display.width',100)
set_option('precision',3)
corr = data.corr(method='pearson')
print(corr)
def skew_csv():
data = read_csv(filename, index_col=0)
skew = data.skew()
print(skew)
def hist_csv():
data = read_csv(filename, index_col=0)
data.hist()
pyplot.show()
def den_csv():
data = read_csv(filename,index_col=0)
data.plot(kind='density',subplots=True,layout=(3,3),sharex=False)
pyplot.show()