-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (169 loc) · 7.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import copy
import logging
import sys
import os
import time
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.transforms as T
import utils
from args import args
from graph import HomogeneousODGraph
from model import SpatialGAT
from preprocessing import preprocessing
from utils import get_path, gaussian_normalize
from loss import choose_criterion_type
def train(model, data, optimizer, criterion, scheduler=None, clip_threshold=None):
model.train()
optimizer.zero_grad()
if hasattr(data, 'edge_label_index'):
# Using RandomLinkSplit
edge_label_index = data.edge_label_index
edge_label = data.edge_label.unsqueeze(-1)
else:
# No Split or Using Inductive Learning (train, validate and test sets are completely disjoint)
edge_label_index = data.edge_index
edge_label = data.edge_label
edge_index = data.edge_index
in_embed, out_embed, volume, general_embed = model.forward(data.x,
edge_index,
data.edge_weight,
edge_label_index)
loss = criterion(volume.squeeze(), edge_label.squeeze())
loss.backward()
if clip_threshold is not None:
nn.utils.clip_grad_norm_(model.parameters(), clip_threshold)
optimizer.step()
if scheduler is not None:
scheduler.step()
return float(loss)
@torch.no_grad()
def test(model, data, criterion, return_embed=False, return_prediction=False):
model.eval()
if hasattr(data, 'edge_label_index'):
edge_label_index = data.edge_label_index
edge_label = data.edge_label.unsqueeze(-1)
else:
edge_label_index = data.edge_index
edge_label = data.edge_label
edge_index = data.edge_index
in_embed, out_embed, out, general_embed = model.forward(data.x,
edge_index,
data.edge_weight,
edge_label_index)
out[out < 0] = 0
test_loss = criterion(out.squeeze(), edge_label.squeeze())
if return_prediction:
if return_embed:
return float(test_loss), out, edge_label, in_embed, out_embed, general_embed
else:
return float(test_loss), out, edge_label
else:
if return_embed:
return float(test_loss), in_embed, out_embed, general_embed
else:
return float(test_loss)
def model_homo(result_folder):
utils.seed_everything(args.seed)
utils.save_dict_to_json(vars(args), os.path.join(result_folder, 'param.json'))
logger = logging.getLogger(__name__)
if args.device is None:
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
else:
device = torch.device(args.device)
logger.info('Device: {}'.format(device))
criterion = choose_criterion_type(args.loss_type)
T_list = [T.ToDevice(device),
T.RandomLinkSplit(num_val=0.1, num_test=0.1, is_undirected=False,
add_negative_train_samples=False, neg_sampling_ratio=0.0)]
transform = T.Compose(T_list)
name_list = ['静岡市葵区', '静岡市駿河区', '浜松市中区', '富士市', '沼津市', '裾野市']
dict_df_data = preprocessing(city_name=name_list[args.city])
logger.info(f'The target city name is {name_list[args.city]}')
g = HomogeneousODGraph(dict_df_data['xs'], dict_df_data['edges']['od'])
data = g.graph
data.x = gaussian_normalize(data.x)
data.edge_weight = gaussian_normalize(data.edge_weight)
if args.is_inductive:
num = data.num_nodes
perm = torch.randperm(num)
train_mask = perm[:int(num * 0.8)]
val_mask = perm[int(num * 0.8):int(num * 0.9)]
test_mask = perm[int(num * 0.9):]
train_data = data.subgraph(train_mask).to(device)
val_data = data.subgraph(val_mask).to(device)
test_data = data.subgraph(test_mask).to(device)
else:
train_data, val_data, test_data = transform(data)
model = SpatialGAT(in_channels=data.x.shape[1],
hidden_channels=args.hidden_channels,
out_channels=args.embedding_size,
heads=args.heads,
dropout=args.dropout,
layer_type=args.layer_type).to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=args.lr, weight_decay=args.lr_weight_decay)
if args.is_scheduled:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=args.scheduler_step,
gamma=args.scheduler_gamma)
else:
scheduler = None
best_loss = float('inf')
best_model = None
best_epoch = 1
train_losses = []
val_losses = []
start = time.time()
for epoch in range(1, args.epochs):
train_loss = train(model, train_data, optimizer, criterion, scheduler=scheduler,
clip_threshold=args.clip_threshold)
val_loss = test(model, val_data, criterion)
if (epoch % 10 == 1) or args.is_verbose:
logger.info('Epoch: {:07d}, Training Loss: {:.4f}, Validation Loss: {:4f}'.format(
epoch, train_loss, val_loss))
if val_loss < best_loss:
best_loss = val_loss
best_epoch = epoch
best_model = copy.deepcopy(model)
train_losses.append(train_loss)
val_losses.append(val_loss)
end = time.time()
logger.info('Training time elapsed: {}'.format(end - start))
logger.info('Best epoch is: {}'.format(best_epoch))
torch.save(model.state_dict(), get_path(os.path.join(result_folder, 'model.pth')))
# Start inferring
start = time.time()
test_loss, prediction, label, in_embed, out_embed, general_embed = test(best_model, test_data, criterion,
return_embed=True,
return_prediction=True)
end = time.time()
logger.info('Inferring time elapsed: {}'.format(end - start))
logger.info('L2 Loss: {}'.format(F.mse_loss(prediction, label).cpu().detach().numpy()))
logger.info('RMSE: {}'.format(np.sqrt(F.mse_loss(prediction, label).cpu().detach().numpy())))
logger.info('L1 Loss: {}'.format(F.l1_loss(prediction, label).cpu().detach().numpy()))
logger.info('PCC: {}'.format(np.corrcoef(prediction.squeeze().cpu().detach().numpy(),
label.squeeze().cpu().detach().numpy())[0][1]))
g.convert_edge_index_with_edge_value_to_df(test_data.edge_label_index, [prediction, label]).to_csv(
os.path.join(result_folder, 'test_prediction.csv'), header=False, index=False)
torch.save(in_embed, get_path(os.path.join(result_folder, 'in_embed.pth')))
torch.save(out_embed, get_path(os.path.join(result_folder, 'out_embed.pth')))
torch.save(general_embed, get_path(os.path.join(result_folder, 'general_embed.pth')))
logger.info('Final: {:4f}'.format(test_loss))
logger.info('Best:{:4f}'.format(best_loss))
def main():
result_folder = utils.create_output_dir(args.save_folder, args.experiment_name)
# set output logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(get_path(os.path.join(result_folder, 'log.txt')))
console_handler = logging.StreamHandler(sys.stdout)
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
targets = console_handler, file_handler
logger.handlers = targets
model_homo(result_folder)
if __name__ == '__main__':
main()