-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathchair_eval.py
192 lines (145 loc) · 5.89 KB
/
chair_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.utils import save_image
from pope_loader import POPEDataSet
from minigpt4.common.dist_utils import get_rank
from minigpt4.models import load_preprocess
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
from PIL import Image
from torchvision.utils import save_image
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn
import json
MODEL_EVAL_CONFIG_PATH = {
"minigpt4": "eval_configs/minigpt4_eval.yaml",
"instructblip": "eval_configs/instructblip_eval.yaml",
"lrv_instruct": "eval_configs/lrv_instruct_eval.yaml",
"shikra": "eval_configs/shikra_eval.yaml",
"llava-1.5": "eval_configs/llava-1.5_eval.yaml",
}
INSTRUCTION_TEMPLATE = {
"minigpt4": "###Human: <Img><ImageHere></Img> <question> ###Assistant:",
"instructblip": "<ImageHere><question>",
"lrv_instruct": "###Human: <Img><ImageHere></Img> <question> ###Assistant:",
"shikra": "USER: <im_start><ImageHere><im_end> <question> ASSISTANT:",
"llava-1.5": "USER: <ImageHere> <question> ASSISTANT:"
}
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.")
parser.add_argument("--model", type=str, help="model")
parser.add_argument("--gpu-id", type=int, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--num_workers", type=int, default=2, help="num workers")
parser.add_argument("--beam", type=int)
parser.add_argument("--sample", action='store_true')
parser.add_argument("--scale_factor", type=float, default=50)
parser.add_argument("--threshold", type=int, default=15)
parser.add_argument("--num_attn_candidates", type=int, default=5)
parser.add_argument("--penalty_weights", type=float, default=1.0)
args = parser.parse_known_args()[0]
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model]
cfg = Config(args)
setup_seeds(cfg)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# ========================================
# Model Initialization
# ========================================
print('Initializing Model')
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
model.eval()
processor_cfg = cfg.get_config().preprocess
processor_cfg.vis_processor.eval.do_normalize = False
vis_processors, txt_processors = load_preprocess(processor_cfg)
print(vis_processors["eval"].transform)
print("Done!")
mean = (0.48145466, 0.4578275, 0.40821073)
std = (0.26862954, 0.26130258, 0.27577711)
norm = transforms.Normalize(mean, std)
img_files = os.listdir(args.data_path)
random.shuffle(img_files)
with open(args.data_path + '../annotations_trainval2014/annotations/instances_val2014.json', 'r') as f:
lines = f.readlines()
coco_anns = json.loads(lines[0])
img_dict = {}
categories = coco_anns["categories"]
category_names = [c["name"] for c in categories]
category_dict = {int(c["id"]): c["name"] for c in categories}
for img_info in coco_anns["images"]:
img_dict[img_info["id"]] = {"name": img_info["file_name"], "anns": []}
for ann_info in coco_anns["annotations"]:
img_dict[ann_info["image_id"]]["anns"].append(
category_dict[ann_info["category_id"]]
)
base_dir = "./log/" + args.model
if not os.path.exists(base_dir):
os.mkdir(base_dir)
for img_id in tqdm(range(len(img_files))):
if img_id == 500:
break
img_file = img_files[img_id]
img_id = int(img_file.split(".jpg")[0][-6:])
img_info = img_dict[img_id]
assert img_info["name"] == img_file
img_anns = set(img_info["anns"])
img_save = {}
img_save["image_id"] = img_id
image_path = args.data_path + img_file
raw_image = Image.open(image_path).convert("RGB")
image = vis_processors["eval"](raw_image).unsqueeze(0)
image = image.to(device)
qu = "Please describe this image in detail."
template = INSTRUCTION_TEMPLATE[args.model]
qu = template.replace("<question>", qu)
with torch.inference_mode():
with torch.no_grad():
out = model.generate(
{"image": norm(image), "prompt":qu},
use_nucleus_sampling=args.sample,
num_beams=args.beam,
max_new_tokens=512,
output_attentions=True,
opera_decoding=True,
scale_factor=args.scale_factor,
threshold=args.threshold,
num_attn_candidates=args.num_attn_candidates,
penalty_weights=args.penalty_weights,
)
img_save["caption"] = out[0]
# dump metric file
with open(os.path.join(base_dir, 'ours-s_{}-t_{}-num_can_{}-p_{}.jsonl'.format(args.scale_factor, args.threshold, args.num_attn_candidates, args.penalty_weights)), "a") as f:
json.dump(img_save, f)
f.write('\n')