-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathise.m
98 lines (74 loc) · 4.24 KB
/
ise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function [ise_out] = ise(actual_image, shuffled_images, dim1, dim2)
% function to calculate image spatial entropy, which builds on shannon's entropy but
% uses quadrilateral markov random field to take into account spatial
% structure. see 'Computation of Image Spatial Entropy Using
% Quadrilateral Markov Random Field (2009)' and 'Fast computation
% methods for estimation of image spatial entropy (2009)'.
% first input is 1x1600, second input is num_shufflesx1600
% third input is first reshaped dimension (larger, horizontal length
% for pillars and walls)
% fourth input is second reshaped dimension (smaller, vertical length
% for pillars and walls)
% parameters to discretize maps
bin_resolution = 0.05; % 0.005
% binning each datapoint
actual_disc = floor(actual_image/bin_resolution)+1;
actual_disc(isnan(actual_disc)) = 0;
shuffled_disc = floor(shuffled_images/bin_resolution)+1;
shuffled_disc(isnan(shuffled_disc)) = 0;
combined_disc = [actual_disc; shuffled_disc];
% reshaping to 2d structure, stacked by shuffles for 3d result
combined_disc = reshape(combined_disc, size(combined_disc,1), dim1, dim2);
% H(X,Xu) computations
temp = cat(4, combined_disc(:,1:end-1,:), combined_disc(:,2:end,:));
temp = reshape(temp, size(temp,1), size(temp,2)*size(temp,3), 2); % now num_shuffles+1 x 39*40 x 2
[vert_entropy] = shuffled_joint_entropy(temp);
% H(Xl,Xu) computations
upper = combined_disc(:,1:end-1,:);
centre = combined_disc(:,2:end,:);
left = circshift(centre,1,3);
temp = cat(4, upper(:,:,2:end), left(:,:,2:end));
temp = reshape(temp, size(temp,1), size(temp,2)*size(temp,3), 2); % now num_shuffles+1 x 39*39 x 2
[pos_angled_entropy] = shuffled_joint_entropy(temp);
% H(Xr,Xu) computations
upper = combined_disc(:,1:end-1,:);
centre = combined_disc(:,2:end,:);
right = circshift(centre,-1,3);
temp = cat(4, upper(:,:,2:end), right(:,:,2:end));
temp = reshape(temp, size(temp,1), size(temp,2)*size(temp,3), 2); % now num_shuffles+1 x 39*39 x 2
[neg_angled_entropy] = shuffled_joint_entropy(temp);
% H(Xr/X) computations ~ H(Xr,X) - H(X)
temp = cat(4, combined_disc(:,:,1:end-1), combined_disc(:,:,2:end));
temp = reshape(temp, size(temp,1), size(temp,2)*size(temp,3), 2); % now num_shuffles+1 x 39*40 x 2
[hor_entropy] = shuffled_joint_entropy(temp);
temp = cat(4, combined_disc(:,:,1:end-1), combined_disc(:,:,1:end-1)); % for H(X)
temp = reshape(temp, size(temp,1), size(temp,2)*size(temp,3), 2); % now num_shuffles+1 x 39*40 x 2
[self_entropy] = shuffled_joint_entropy(temp);
hor_cond_entropy = hor_entropy - self_entropy;
% final calculation
mn = size(combined_disc,1)*size(combined_disc,2);
ise_out = mn.*(vert_entropy + hor_cond_entropy);
ise_out = ise_out - (mn/2).*(pos_angled_entropy + neg_angled_entropy);
ise_out = ise_out ./ mn;
end
function [entropy_summed] = shuffled_joint_entropy(stacked_input)
% expects (num_shuffles+1 x num_pairs_x*num_pairs_y x 2) array
% outputs column vector of entropies for all shuffles
saved_size2 = size(stacked_input,2);
saved_size1 = size(stacked_input,1);
temp = permute(stacked_input, [2 1 3]);
temp = reshape(temp, size(temp,1)*size(temp,2), size(temp,3)); % now (num_shuffles+1)*39*40 x 2
temp = [temp repelem(1:saved_size1, 1, saved_size2)'];
temp = sortrows(temp,[3 1 2]);
temp(find(sum(temp==0,2)>0),:) = [];
temp(:,4) = [0; (diff(temp(:,1))~=0 | diff(temp(:,2))~=0 + diff(temp(:,3))~=0)];
occur_count = diff([1; find(temp(:,4)>0); length(temp(:,4))+1]); % occurrences of the corresponding sequences below
unique_combi = temp([1; find(temp(:,4)>0)],1:3); % n x 3 (first 2 columns store binned firing rate, last column stores shuffle number)
total_count = accumarray(unique_combi(:,3), occur_count);
occur_count = occur_count./total_count(unique_combi(:,3)); % converted to probability
sum_edges = [diff(unique_combi(:,3)); 1];
entropy_base = -occur_count .* log2(occur_count);
entropy_summed = cumsum(entropy_base);
entropy_summed = entropy_summed(find(sum_edges>0));
entropy_summed = diff([0; entropy_summed]);
end