Skip to content

Latest commit

 

History

History
353 lines (290 loc) · 9.73 KB

File metadata and controls

353 lines (290 loc) · 9.73 KB

Convex Hull using Divide and Conquer Algorithm

Input is an array of points specified by their x and y coordinates. The output is the convex hull of this set of points. Examples:

Input : points[] = {(0, 0), (0, 4), (-4, 0), (5, 0), 
                   (0, -6), (1, 0)};
Output : (-4, 0), (5, 0), (0, -6), (0, 4)

Pre-requisite: Tangents between two convex polygons Algorithm: Given the set of points for which we have to find the convex hull. Suppose we know the convex hull of the left half points and the right half points, then the problem now is to merge these two convex hulls and determine the convex hull for the complete set. This can be done by finding the upper and lower tangent to the right and left convex hulls. This is illustrated here Tangents between two convex polygons Let the left convex hull be a and the right convex hull be b. Then the lower and upper tangents are named as 1 and 2 respectively, as shown in the figure. Then the red outline shows the final convex hull.

Convex_hull_2

Explanation

Now the problem remains, how to find the convex hull for the left and right half. Now recursion comes into the picture, we divide the set of points until the number of points in the set is very small, say 5, and we can find the convex hull for these points by the brute algorithm. The merging of these halves would result in the convex hull for the complete set of points. Note: We have used the brute algorithm to find the convex hull for a small number of points and it has a time complexity of O(n^3) . But some people suggest the following, the convex hull for 3 or fewer points is the complete set of points. This is correct but the problem comes when we try to merge a left convex hull of 2 points and right convex hull of 3 points, then the program gets trapped in an infinite loop in some special cases. So, to get rid of this problem I directly found the convex hull for 5 or fewer points by O(n^3) algorithm, which is somewhat greater but does not affect the overall complexity of the algorithm.

Implementation

CPP

// A divide and conquer program to find convex
// hull of a given set of points.
#include<bits/stdc++.h>
using namespace std;

// stores the centre of polygon (It is made
// global because it is used in compare function)
pair<int, int> mid;

// determines the quadrant of a point
// (used in compare())
int quad(pair<int, int> p)
{
	if (p.first >= 0 && p.second >= 0)
		return 1;
	if (p.first <= 0 && p.second >= 0)
		return 2;
	if (p.first <= 0 && p.second <= 0)
		return 3;
	return 4;
}

// Checks whether the line is crossing the polygon
int orientation(pair<int, int> a, pair<int, int> b,
				pair<int, int> c)
{
	int res = (b.second-a.second)*(c.first-b.first) -
			(c.second-b.second)*(b.first-a.first);

	if (res == 0)
		return 0;
	if (res > 0)
		return 1;
	return -1;
}

// compare function for sorting
bool compare(pair<int, int> p1, pair<int, int> q1)
{
	pair<int, int> p = make_pair(p1.first - mid.first,
								p1.second - mid.second);
	pair<int, int> q = make_pair(q1.first - mid.first,
								q1.second - mid.second);

	int one = quad(p);
	int two = quad(q);

	if (one != two)
		return (one < two);
	return (p.second*q.first < q.second*p.first);
}

// Finds upper tangent of two polygons 'a' and 'b'
// represented as two vectors.
vector<pair<int, int>> merger(vector<pair<int, int> > a,
							vector<pair<int, int> > b)
{
	// n1 -> number of points in polygon a
	// n2 -> number of points in polygon b
	int n1 = a.size(), n2 = b.size();

	int ia = 0, ib = 0;
	for (int i=1; i<n1; i++)
		if (a[i].first > a[ia].first)
			ia = i;

	// ib -> leftmost point of b
	for (int i=1; i<n2; i++)
		if (b[i].first < b[ib].first)
			ib=i;

	// finding the upper tangent
	int inda = ia, indb = ib;
	bool done = 0;
	while (!done)
	{
		done = 1;
		while (orientation(b[indb], a[inda], a[(inda+1)%n1]) >=0)
			inda = (inda + 1) % n1;

		while (orientation(a[inda], b[indb], b[(n2+indb-1)%n2]) <=0)
		{
			indb = (n2+indb-1)%n2;
			done = 0;
		}
	}

	int uppera = inda, upperb = indb;
	inda = ia, indb=ib;
	done = 0;
	int g = 0;
	while (!done)//finding the lower tangent
	{
		done = 1;
		while (orientation(a[inda], b[indb], b[(indb+1)%n2])>=0)
			indb=(indb+1)%n2;

		while (orientation(b[indb], a[inda], a[(n1+inda-1)%n1])<=0)
		{
			inda=(n1+inda-1)%n1;
			done=0;
		}
	}

	int lowera = inda, lowerb = indb;
	vector<pair<int, int>> ret;

	//ret contains the convex hull after merging the two convex hulls
	//with the points sorted in anti-clockwise order
	int ind = uppera;
	ret.push_back(a[uppera]);
	while (ind != lowera)
	{
		ind = (ind+1)%n1;
		ret.push_back(a[ind]);
	}

	ind = lowerb;
	ret.push_back(b[lowerb]);
	while (ind != upperb)
	{
		ind = (ind+1)%n2;
		ret.push_back(b[ind]);
	}
	return ret;

}

// Brute force algorithm to find convex hull for a set
// of less than 6 points
vector<pair<int, int>> bruteHull(vector<pair<int, int>> a)
{
	// Take any pair of points from the set and check
	// whether it is the edge of the convex hull or not.
	// if all the remaining points are on the same side
	// of the line then the line is the edge of convex
	// hull otherwise not
	set<pair<int, int> >s;

	for (int i=0; i<a.size(); i++)
	{
		for (int j=i+1; j<a.size(); j++)
		{
			int x1 = a[i].first, x2 = a[j].first;
			int y1 = a[i].second, y2 = a[j].second;

			int a1 = y1-y2;
			int b1 = x2-x1;
			int c1 = x1*y2-y1*x2;
			int pos = 0, neg = 0;
			for (int k=0; k<a.size(); k++)
			{
				if (a1*a[k].first+b1*a[k].second+c1 <= 0)
					neg++;
				if (a1*a[k].first+b1*a[k].second+c1 >= 0)
					pos++;
			}
			if (pos == a.size() || neg == a.size())
			{
				s.insert(a[i]);
				s.insert(a[j]);
			}
		}
	}

	vector<pair<int, int>>ret;
	for (auto e:s)
		ret.push_back(e);

	// Sorting the points in the anti-clockwise order
	mid = {0, 0};
	int n = ret.size();
	for (int i=0; i<n; i++)
	{
		mid.first += ret[i].first;
		mid.second += ret[i].second;
		ret[i].first *= n;
		ret[i].second *= n;
	}
	sort(ret.begin(), ret.end(), compare);
	for (int i=0; i<n; i++)
		ret[i] = make_pair(ret[i].first/n, ret[i].second/n);

	return ret;
}

// Returns the convex hull for the given set of points
vector<pair<int, int>> divide(vector<pair<int, int>> a)
{
	// If the number of points is less than 6 then the
	// function uses the brute algorithm to find the
	// convex hull
	if (a.size() <= 5)
		return bruteHull(a);

	// left contains the left half points
	// right contains the right half points
	vector<pair<int, int>>left, right;
	for (int i=0; i<a.size()/2; i++)
		left.push_back(a[i]);
	for (int i=a.size()/2; i<a.size(); i++)
		right.push_back(a[i]);

	// convex hull for the left and right sets
	vector<pair<int, int>>left_hull = divide(left);
	vector<pair<int, int>>right_hull = divide(right);

	// merging the convex hulls
	return merger(left_hull, right_hull);
}

// Driver code
int main()
{
	vector<pair<int, int> > a;
	a.push_back(make_pair(0, 0));
	a.push_back(make_pair(1, -4));
	a.push_back(make_pair(-1, -5));
	a.push_back(make_pair(-5, -3));
	a.push_back(make_pair(-3, -1));
	a.push_back(make_pair(-1, -3));
	a.push_back(make_pair(-2, -2));
	a.push_back(make_pair(-1, -1));
	a.push_back(make_pair(-2, -1));
	a.push_back(make_pair(-1, 1));

	int n = a.size();

	// sorting the set of points according
	// to the x-coordinate
	sort(a.begin(), a.end());
	vector<pair<int, int> >ans = divide(a);

	cout << "convex hull:\n";
	for (auto e:ans)
	cout << e.first << " "
			<< e.second << endl;

	return 0;
}

JAVA CODE

public class Solution {
    public List<Point> outerTrees(Point[] points) {
        Set<Point> result = new HashSet<>();
        
        // Find the leftmost point
        Point first = points[0];
        int firstIndex = 0;
        for (int i = 1; i < points.length; i++) {
            if (points[i].x < first.x) {
                first = points[i];
                firstIndex = i;
            }
        }
        result.add(first);
        
        Point cur = first;
        int curIndex = firstIndex;
        do {
            Point next = points[0];
            int nextIndex = 0;
            for (int i = 1; i < points.length; i++) {
                if (i == curIndex) continue;
                int cross = crossProductLength(cur, points[i], next);
                if (nextIndex == curIndex || cross > 0 ||
                        // Handle collinear points
                        (cross == 0 && distance(points[i], cur) > distance(next, cur))) {
                    next = points[i];
                    nextIndex = i;
                }
            }
            // Handle collinear points
            for (int i = 0; i < points.length; i++) {
                if (i == curIndex) continue;
                int cross = crossProductLength(cur, points[i], next);
                if (cross == 0) {
                    result.add(points[i]);
                }
            }

            cur = next;
            curIndex = nextIndex;
            
        } while (curIndex != firstIndex);
        
        return new ArrayList<Point>(result);
    }
    
    private int crossProductLength(Point A, Point B, Point C) {
        // Get the vectors' coordinates.
        int BAx = A.x - B.x;
        int BAy = A.y - B.y;
        int BCx = C.x - B.x;
        int BCy = C.y - B.y;
    
        // Calculate the Z coordinate of the cross product.
        return (BAx * BCy - BAy * BCx);
    }

    private int distance(Point p1, Point p2) {
        return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
    }
}

Output:

Convex Hull:
-5 -3
-1 -5
1 -4
0 0
-1 1

Time Complexity: The merging of the left and the right convex hulls take O(n) time and as we are dividing the points into two equal parts, so the time complexity of the above algorithm is O(n * log n).

Auxiliary Space: O(n)