-
Notifications
You must be signed in to change notification settings - Fork 0
/
MAXIMAL SQUARE
35 lines (30 loc) · 1.26 KB
/
MAXIMAL SQUARE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m][n]; // dp[i][j] represents the side length of the largest square ending at (i, j)
int maxLength = 0; // Variable to keep track of the maximum side length
// Initialize the first row and column of dp
for (int i = 0; i < m; i++) {
dp[i][0] = matrix[i][0] - '0';
maxLength = Math.max(maxLength, dp[i][0]);
}
for (int j = 0; j < n; j++) {
dp[0][j] = matrix[0][j] - '0';
maxLength = Math.max(maxLength, dp[0][j]);
}
// Calculate dp values for the remaining cells
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][j] == '1') {
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
maxLength = Math.max(maxLength, dp[i][j]);
}
}
}
return maxLength * maxLength; // Return the area of the largest square
}
}