-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathworker.py
177 lines (106 loc) · 6.01 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python
"""
Author: Shashank Kotyan
Email: shashankkotyan@gmail.com
"""
import os, random, traceback, pickle, numpy as np
from time import time
import build
from process import Process
class Worker:
def __init__(self, args, data):
self.test = args.test
self.dataset = args.dataset
self.use_augmentation = args.use_augmentation
self.use_limited_data = args.use_limited_data
self.epochs = args.epochs
self.data = data
self.batch_size = 128
def preprocess(self, x):
def process(x, mean, std):
for i in range(3): x[:,:,:,i] = (x[:,:,:,i] - mean[i]) / std[i]
return x
if self.dataset == 2: mean, std = [125.307, 122.95, 113.865], [62.9932, 62.0887, 66.7048]
else: mean, std = [0, 0, 0], [255, 255, 255]
return process(x, mean, std)
def train(self, gen):
self.x_train, self.y_train, self.x_test, self.y_test = self.preprocess(self.data['x_train']), self.data['y_train'], self.preprocess(self.data['x_test']), self.data['y_test']
if self.test: history = self.train_test()
else:
if self.use_limited_data: history = self.train_limited()
else: history = self.train_all()
return history.history
def train_test(self):
return self.model.fit(
self.x_train[:1], self.y_train[:1], batch_size=self.batch_size,
epochs=1, verbose=0, validation_data=(self.x_test[:1], self.y_test[:1])
)
def train_all(self):
if self.use_augmentation:
return self.model.fit_generator(
self.data['datagen'].flow(self.x_train, self.y_train, batch_size=self.batch_size),
steps_per_epoch= (len(self.data['x_train'])//self.batch_size),
epochs=self.epochs, verbose=0, callbacks=self.data['callbacks'], validation_data=(self.x_test, self.y_test)
)
else:
return self.model.fit(
self.x_train, self.y_train, batch_size=self.batch_size,
epochs=self.epochs, verbose=0, callbacks=self.data['callbacks'], validation_data=(self.x_test, self.y_test)
)
def train_limited(self):
random.seed(time())
indices = random.sample(list(range(self.data['count_x_train'])), 0.1*self.data['count_x_train'])
if self.use_augmentation:
return self.model.fit_generator(
self.data['datagen'].flow(self.x_train[indices], self.y_train[indices], batch_size=self.batch_size), steps_per_epoch= (len(self.data['x_train'][:10000])//self.batch_size),
epochs=self.epochs, verbose=0, callbacks=self.data['callbacks'], validation_data=(self.x_test, self.y_test)
)
else:
return self.model.fit(
self.x_train[indices], self.y_train[indices], batch_size=self.batch_size,
epochs=self.epochs, verbose=0, callbacks=self.data['callbacks'], validation_data=(self.x_test, self.y_test)
)
def run_model(self, gpu_index, individual, dna, gen):
self.model = build.build_block(dna['graph'], num_classes=self.data['num_classes'], gpu_index=gpu_index)
start_time = time()
history = self.train(gen)
end_time = time()
with open(f"{individual}/training_history.pkl", 'wb') as history_file: pickle.dump(history, history_file, pickle.HIGHEST_PROTOCOL)
fitness = history['val_accuracy'][-1]
metrics = {"fitness": fitness, "evaluation_time": end_time - start_time}
with open(f"{individual}/metrics.pkl", 'wb') as metrics_file: pickle.dump(metrics, metrics_file, pickle.HIGHEST_PROTOCOL)
# from tensorflow.keras import utils
# utils.plot_model(self.model, show_shapes=True, to_file=f"{individual}/model.png")
def evaluate_individual(self, gpu_index, individual, dna, gen, population):
try:
p = Process(target=self.run_model, args=(gpu_index, individual, dna, gen))
p.start()
p.join()
if p.exception is not None: raise Exception(f"{p.exception[0]}, {p.exception[1]}")
population.update_populations(dna)
with open(f"{individual}/metrics.pkl", 'rb') as metrics_file: metrics = pickle.load(metrics_file)
population.write_log(f"GPU {gpu_index} completed training {individual.split('/')[2]} in {metrics['evaluation_time']:.2f} seconds with fitness {metrics['fitness']:.2f}\n")
return metrics
except Exception as e:
population.write_exceptions_log(f"Exception occured at training model: {e} \n{traceback.format_exc()}\n")
return None
def create_child(self, gpu_index, parent_dna, num_mutations, individual, population, store_individual, gen):
metrics = None
while metrics is None:
dna = parent_dna
mutations = []
for _ in range(num_mutations):
test_dna = None
while test_dna is None: mutation, test_dna = population.mutate(dna)
dna = test_dna
mutations += [mutation]
metrics = self.evaluate_individual(gpu_index, individual, dna, gen, population)
store_individual(individual, dna, metrics, mutations)
open(f"{individual}/alive.txt", 'w').close()
def create_parent(self, gpu_index, individual, population, store_individual, gen):
metrics = None
while metrics is None:
dna = population.create_random_model()
metrics = self.evaluate_individual(gpu_index, individual, dna, gen, population)
store_individual(individual, dna, metrics)
open(f"{individual}/alive.txt", 'w').close()