-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathconfig.py
91 lines (76 loc) · 3.77 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import os
from model import Model
def argparser(is_train=True):
def str2bool(v):
return v.lower() == 'true'
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument('--prefix', type=str, default='default')
parser.add_argument('--train_dir', type=str)
parser.add_argument('--checkpoint', type=str, default=None)
parser.add_argument('--checkpoint_g', type=str, default=None)
parser.add_argument('--checkpoint_d', type=str, default=None)
parser.add_argument('--dataset', type=str, default='celeba')
parser.add_argument('--dataset_path', type=str, default=None)
parser.add_argument('--img_h', type=int, default=256)
parser.add_argument('--img_w', type=int, default=256)
# Model
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--gan_type', type=str, default='wgan-gp',
choices=['lsgan', 'hinge', 'wgan-gp'])
parser.add_argument('--n_z', type=int, default=128)
parser.add_argument('--num_dis_conv', type=int, default=6)
parser.add_argument('--num_g_res_block', type=int, default=3)
parser.add_argument('--num_d_res_block', type=int, default=3)
parser.add_argument('--g_norm_type', type=str, default='batch',
choices=['batch', 'instance', 'none'])
parser.add_argument('--d_norm_type', type=str, default='none',
choices=['batch', 'instance', 'none'])
parser.add_argument('--deconv_type', type=str, default='bilinear',
choices=['bilinear', 'nn', 'transpose'])
# Training config {{{
# ========
# log
parser.add_argument('--log_step', type=int, default=100)
parser.add_argument('--write_summary_step', type=int, default=100)
parser.add_argument('--ckpt_save_step', type=int, default=10000)
# learning
parser.add_argument('--max_training_steps', type=int, default=10000000)
parser.add_argument('--learning_rate_g', type=float, default=1e-4)
parser.add_argument('--learning_rate_d', type=float, default=1e-4)
parser.add_argument('--adam_beta1', type=float, default=0.5)
parser.add_argument('--adam_beta2', type=float, default=0.9)
parser.add_argument('--lr_weight_decay', type=str2bool, default=False)
parser.add_argument('--update_g', type=int, default=1)
parser.add_argument('--update_d', type=int, default=1)
parser.add_argument('--gamma', type=float, default=10)
# }}}
# Testing config {{{
# ========
parser.add_argument(
'--output_file', type=str, default=None,
help='dump all generated images to a HDF5 file with the filename specify here')
parser.add_argument('--write_summary_image', type=str2bool, default=False)
parser.add_argument('--summary_image_name', type=str, default='summary.png')
parser.add_argument('--max_evaluation_steps', type=int, default=5)
# }}}
config = parser.parse_args()
if config.dataset_path is None:
dataset_path = os.path.join('./datasets', config.dataset.lower())
else:
dataset_path = config.dataset_path
if config.dataset in ['CIFAR10', 'CIFAR100', 'SVHN', 'MNIST', 'Fashion_MNIST']:
import datasets.hdf5_loader as dataset
else:
import datasets.image_loader as dataset
dataset_train, dataset_test = dataset.create_default_splits(
dataset_path, h=config.img_h, w=config.img_w)
img = dataset_train.get_data(dataset_train.ids[0])
config.h = img.shape[0]
config.w = img.shape[1]
config.c = img.shape[2]
# --- create model ---
model = Model(config, debug_information=config.debug, is_train=is_train)
return config, model, dataset_train, dataset_test