GAT
NodeEmbeddingModule2:modify GAT
Generate a perturbation graph
Generate a perturbation graph
packaged into a function
Multi-Granularity Cross Representation and Matching
for i in range(perturbed_a.shape[0]) Perturbation graph are involved in training
plt.savefig
torch.save pth
-
Specify a graph pair to train and save the model.
-
Add the model overload module to generate the similarity score of the remaining graph pair and save it as a file. (Nearly 4 hours)
-
Save prediction_loss as txt and fig to evaluate the difference in the effect of the graph
np.savetxt('./similarity score/z'+ 'GP_'+str(j)+'_node_'+str(node)+'_data_'+str(data_num)+'model_'+str(formatted_time)+'.txt', z_p)
np.savetxt('./prediction_loss/GraphPair_' + str(j) + '_n' + str(node) + '_d' + str(data_num) + '_Prediction_Loss_epoch_' + str(args.max_epoch) + '_lr_' + str(args.lr) + '_' + str(formatted_time) +'.txt', loss_history2)
weights PageRank
cuda Unused
The oldest version
CrossEntropy
Basic version
model test:
use cuda
with plot
model test:
use cuda
line charts
for Rg
for predict data
Evaluate metric calculations