-
Notifications
You must be signed in to change notification settings - Fork 1
/
wscsiibp.m
209 lines (172 loc) · 9.09 KB
/
wscsiibp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
function [learnedModel,p_acc,a_acc,c_acc] = wscsiibp(para,model,xData)
% Initialiazing parameters of variational model i.e., \tau, \nu, \phi, \sigma_k (Phi)
c_nu=model.c_nu;
c_tau=model.c_tau;
Phi=model.Phi;
phi=model.phi;
% Initialiazing the appearance and the noise variance for the IBP model
sigma_A1=para.sigmaA1;
sigma_n1=para.sigmaN1;
sigma_A2=para.sigmaA2;
sigma_n2=para.sigmaN2;
% Maximum number of latent features
K=para.K;
% regularizing(weighing) parameter for the constraints
C=para.C;
% Dimension of input features for subject and action concept
D1=para.D1;
D2=para.D2;
% Parameter of beta distribution
alpha=para.alpha;
feature_idx = 1:K;
a_X=xData.allX;
fprintf('Iter\t Person Acc\t Action Acc\t Pairwise Acc\n');
for I = 1:para.MAX_ITERATIONS
a_nu=cell2mat(reshape(c_nu',numel(c_nu),1));
% As per the Algorithm 1 line 10, appearance and noise variances are updated after every T iterations (epochs).
if(mod(I,10) == 0)
sigma_A1 = sqrt((D1*sum(Phi(1,1,:)) + trace(phi(:,1:D1)*phi(:,1:D1)'))/(K*D1));
% For our experiment we find that updating \sigma_ns worsen the performance.
% sigma_n1 = sqrt((sum(sum(a_X(:,1:D1).*a_X(:,1:D1))) - 2*sum(sum((a_X(:,1:D1)*phi(:,1:D1)').*a_nu)) ...
% + trace(a_nu*(phi(:,1:D1)*phi(:,1:D1)')*a_nu') - trace(a_nu*diag(diag(phi(:,1:D1)*phi(:,1:D1)'))*a_nu') ...
% + D1*sum(a_nu*squeeze(Phi(1,1,:))) + sum(a_nu*diag(phi(:,1:D1)*phi(:,1:D1)')))/(D1*xData.allSegLength));
sigma_A2 = sqrt((D2*sum(Phi(D1+1,D1+1,:)) + trace(phi(:,D1+1:end)*phi(:,D1+1:end)'))/(K*D2));
sigma_n2 = sqrt((sum(sum(a_X(:,D1+1:end).*a_X(:,D1+1:end))) - 2*sum(sum((a_X(:,D1+1:end)*phi(:,D1+1:end)').*a_nu)) ...
+ trace(a_nu*(phi(:,D1+1:end)*phi(:,D1+1:end)')*a_nu') - trace(a_nu*diag(diag(phi(:,D1+1:end)*phi(:,D1+1:end)'))*a_nu') ...
+ D2*sum(a_nu*squeeze(Phi(D1+1,D1+1,:))) + sum(a_nu*diag(phi(:,D1+1:end)*phi(:,D1+1:end)')))/(D2*xData.allSegLength));
end
% Code for reordering the features. This is done only during the first 7 iterations
if I<8
% Due to the structure of the learning algorithm of IBP model one requires the latent features to be re-ordered.
temp_tau=reshape(c_tau',numel(c_tau),1);
% reordering is decided based on the nu
[tmp, feature_order] = sort(sum(a_nu), 'descend');
% reordering all the features one after another
for temp_i=1:length(temp_tau)
if(~isempty(temp_tau{temp_i}))
temp_tau{temp_i}= temp_tau{temp_i}(feature_order,:);
end
end
a_tau = cell2mat(temp_tau);
phi= phi(feature_order,:);
Phi =Phi(:,:,feature_order);
a_nu = a_nu(:,feature_order);
feature_idx = feature_idx(feature_order);
% storing the reverse ordering to retrieve back the original index
rev_ordering = [];
for r=1:length(feature_idx)
rev_ordering = [rev_ordering find(feature_idx == r)];
end
else
% Unfolding the total videos into \sum N_i
a_tau=cell2mat(reshape(c_tau',numel(c_tau),1));
end
% As per the Algorithm 1 line 6, variational model parameters \phi and \sigma_k is updated
for k = 1:K
Phi(1:D1,1:D1,k) = (1/sigma_A1^2 + 1/sigma_n1^2 * sum(a_nu(:,k)))^-1 * eye(D1);
phi(k,1:D1) = 1/sigma_n1^2 * a_nu(:,k)'*(a_X(:,1:D1)-a_nu*phi(:,1:D1)+a_nu(:,k)*phi(k,1:D1)) * Phi(1,1,k);
Phi(D1+1:end,D1+1:end,k) = (1/sigma_A2^2 + 1/sigma_n2^2 * sum(a_nu(:,k)))^-1 * eye(D2);
phi(k,D1+1:end) = 1/sigma_n2^2 * a_nu(:,k)'*(a_X(:,D1+1:end)-a_nu*phi(:,D1+1:end)+a_nu(:,k)*phi(k,D1+1:end)) * Phi(D1+1,D1+1,k);
end
% As per Algorithm 1 line 7,8, variational model parameters \nu & \tau are updated for each video individually
for i_img=1:xData.imgLength
cur_nu=cell2mat(c_nu(i_img,:)');
cur_tau=cell2mat(c_tau(i_img,:)');
if I<8 % change feature order here
cur_nu = cur_nu(:,feature_order);
cur_tau = [cur_tau(feature_order,:);cur_tau(K+1:end,:)];
end
% Reading features of all the tracks of curent video
cur_X=cell2mat(xData.xImgCellFlat(i_img,:)');
% Reading weak labels of current video
cur_label=sum(cell2mat(xData.xTopicList(i_img,:)'),1);
lengthOfLabel=length(cur_label);
% latent index for backgrounds is set to 1. BG is present in all videos and tracks.
ws=[cur_label ones(1,K-lengthOfLabel)]; % lengthOfLabel
ws = ws(feature_idx);
% Reading information on correlated entities for using constraints
pairlist=xData.xPairList{i_img};
% Using multinomial approximation (q) for optimisation on E_nu[log(1-prod(v_m))]
q = zeros(K,K);
q(1,1) = 1;
for k = 2:K
q(k,1) = exp(psi(cur_tau(1,2))-psi(cur_tau(1,1)+cur_tau(1,2)));
for i = 2:k
q(k,i) = exp(psi(cur_tau(i,2))+sum(psi(cur_tau(1:i-1,1)))-sum(psi(cur_tau(1:i,1)+cur_tau(1:i,2))));
end
end
q = (q+eps)./repmat(sum(q,2),1,K);
% Update \tau using equation S22 and S23 in supplementary
for k = 1:K
nu_sum = sum(cur_nu,1);
cur_tau(k,1) = alpha + sum(nu_sum(k:K)) + (xData.segLenPerImg(i_img)-nu_sum(k+1:K))*sum(q(k+1:K,k+1:K),2);
cur_tau(k,2) = 1 + (xData.segLenPerImg(i_img)-nu_sum(k:K))*q(k:K,k);
end
% Using multinomial approximation (q) for optimisation on E_nu[log(1-prod(v_m))]
% Recomputing q based on updated tau
q = zeros(K,K);
q(1,1) = 1;
for k = 2:K
q(k,1) = exp(psi(cur_tau(1,2))-psi(cur_tau(1,1)+cur_tau(1,2)));
for i = 2:k
q(k,i) = exp(psi(cur_tau(i,2))+sum(psi(cur_tau(1:i-1,1)))-sum(psi(cur_tau(1:i,1)+cur_tau(1:i,2))));
end
end
q = (q+eps)./repmat(sum(q,2),1,K);
% Update nu
% adding dummy column for simpler calculation
cur_nu = [ones(size(cur_nu,1),1) cur_nu];
rev_ordering = [0 rev_ordering];
for k = 1:K
tmpS = 0;
if k > 1
tmpS = fliplr(cumsum(fliplr(q(k,2:k))))*psi(cur_tau(1:k-1,1));
end
tmpC = 0;
if(~isempty(pairlist(:,1) == feature_idx(k)+1))
cnstrnt_numat = cur_nu(:,rev_ordering(pairlist((pairlist(:,1) == feature_idx(k)+1),2))+1);
indx = find(cur_nu(:,k+1)'*cnstrnt_numat < 3);
if(~isempty(indx))
tmpC = C*sum(cnstrnt_numat(:,indx),2);
end
end
% Using Eq (11) and (12) to update \nu
cur_nu(:,k+1) = (ws(k)>0)./(1+exp(-(...
sum(psi(cur_tau(1:k,1))-psi(cur_tau(1:k,1)+cur_tau(1:k,2))) ...
-(q(k,1:k)*psi(cur_tau(1:k,2)) + tmpS - fliplr(cumsum(fliplr(q(k,1:k))))*psi(cur_tau(1:k,1)+cur_tau(1:k,2)) - q(k,1:k)*log(q(k,1:k))')...
- 0.5/sigma_n1^2*(trace(Phi(1:D1,1:D1,k))+phi(k,1:D1)*phi(k,1:D1)')...
- 0.5/sigma_n2^2*(trace(Phi(D1+1:end,D1+1:end,k))+phi(k,D1+1:end)*phi(k,D1+1:end)')...
+ 1/sigma_n1^2*phi(k,1:D1)*(cur_X(:,1:D1)-cur_nu(:,2:end)*phi(:,1:D1)+cur_nu(:,k+1)*phi(k,1:D1))'...
+ 1/sigma_n2^2*phi(k,D1+1:end)*(cur_X(:,D1+1:end)-cur_nu(:,2:end)*phi(:,D1+1:end)+cur_nu(:,k+1)*phi(k,D1+1:end))' + tmpC')));
end
% removing dummy class
cur_nu(:,1)=[];
rev_ordering(1) = [];
% Storing updated parameters back into input data handler
c_tau(i_img,1:xData.segLenPerImg(i_img))= mat2cell(cur_tau,[K*ones(1,xData.segLenPerImg(i_img))],2)';
c_nu(i_img,1:xData.segLenPerImg(i_img))= mat2cell(cur_nu,[ones(1,xData.segLenPerImg(i_img))],K)';
% For the final iteration we undo all the mapping and store back.
% This step maps back value of \nu to corresponding latent factors
if(I == para.MAX_ITERATIONS)
c_nu(i_img,1:xData.segLenPerImg(i_img))= mat2cell(cur_nu(:,rev_ordering),[ones(1,xData.segLenPerImg(i_img))],K)';
c_tau(i_img,1:xData.segLenPerImg(i_img))= mat2cell([cur_tau(rev_ordering,:);cur_tau(K+1:end,:)],[K*ones(1,xData.segLenPerImg(i_img))],2)';
end
end
% Track accuracy every iteration
if(I == para.MAX_ITERATIONS)
[p_acc(I),a_acc(I),c_acc(I)] = accuracy(c_nu,1:K,xData,1);
% Uncomment for a2d dataset
% [p_acc(I),a_acc(I),c_acc(I),~,~] = accuracy_a2d(c_nu,1:K,xData,1,D1);
else
[p_acc(I),a_acc(I),c_acc(I)] = accuracy(c_nu,rev_ordering,xData,0);
% Uncomment for a2d dataset
% [p_acc(I),a_acc(I),c_acc(I),~,~] = accuracy_a2d(c_nu,rev_ordering,xData,0,D1);
end
fprintf('%d\t%1.4f\t%1.4f\t%1.4f\n',I,p_acc(I),a_acc(I),c_acc(I));
end
% Return back variational parameters \nu, \Phi and \sigma_k
% These are used during inference.
learnedModel.c_nu=c_nu;
learnedModel.phi=phi(rev_ordering,:);
learnedModel.Phi=Phi(:,:,rev_ordering);
end