Skip to content

Commit

Permalink
siluette
Browse files Browse the repository at this point in the history
  • Loading branch information
sronilsson committed Dec 27, 2024
1 parent 76973fd commit 3c9087d
Show file tree
Hide file tree
Showing 4 changed files with 44 additions and 4 deletions.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
# Setup configuration
setuptools.setup(
name="simba-uw-tf-dev",
version="2.4.6",
version="2.4.8",
author="Simon Nilsson, Jia Jie Choong, Sophia Hwang",
author_email="sronilsson@gmail.com",
description="Toolkit for computer classification and analysis of behaviors in experimental animals",
Expand Down
2 changes: 1 addition & 1 deletion simba/SimBA.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,7 +356,7 @@ def activate(box, *args):

label_behavior_frm = CreateLabelFrameWithIcon(parent=tab7, header="LABEL BEHAVIOR", icon_name=Keys.DOCUMENTATION.value, icon_link=Links.LABEL_BEHAVIOR.value)
select_video_btn_new = SimbaButton(parent=label_behavior_frm, txt="Select video (create new video annotation)", img='label_blue', txt_clr='navy', cmd=select_labelling_video, cmd_kwargs={'config_path': lambda :self.config_path, 'threshold_dict': lambda: None, 'setting': lambda: "from_scratch", 'continuing': lambda: False}, thread=False)
select_video_btn_continue = SimbaButton(parent=label_behavior_frm, txt="Select video (continue existing video annotation)", img='label_yellow', txt_clr='darkgoldenrod', cmd=select_labelling_video, cmd_kwargs={'config_path': lambda: self.config_path, 'threshold_dict': lambda:None, 'setting': lambda:None, 'continuing': lambda:True}, thread=False)
select_video_btn_continue = SimbaButton(parent=label_behavior_frm, txt="Select video (continue existing video annotation)", img='label_yellow', txt_clr='darkgoldenrod', cmd=select_labelling_video, cmd_kwargs={'config_path': lambda: self.config_path, 'threshold_dict': lambda:None, 'setting': lambda: None, 'continuing': lambda:True}, thread=False)

label_thirdpartyann = CreateLabelFrameWithIcon(parent=tab7, header="IMPORT THIRD-PARTY BEHAVIOR ANNOTATIONS", icon_name=Keys.DOCUMENTATION.value, icon_link=Links.THIRD_PARTY_ANNOTATION.value)
button_importmars = SimbaButton(parent=label_thirdpartyann, txt="Import MARS Annotation (select folder with .annot files)", txt_clr="blue", cmd=self.importMARS, thread=False)
Expand Down
5 changes: 3 additions & 2 deletions simba/labelling/labelling_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def __init__(self,
config_path: Union[str, os.PathLike],
file_path: Union[str, os.PathLike],
threshold_dict: Optional[Dict[str, float]] = None,
setting: Literal["from_scratch", "pseudo"] = "pseudo",
setting: Optional[Literal["from_scratch", "pseudo"]] = "from_scratch",
continuing: Optional[bool] = False):

ConfigReader.__init__(self, config_path=config_path)
Expand Down Expand Up @@ -360,7 +360,8 @@ def select_labelling_video(config_path: Union[str, os.PathLike],
check_file_exist_and_readable(file_path=config_path)
if threshold_dict is not None:
check_valid_dict(x=threshold_dict, valid_key_dtypes=(str,), valid_values_dtypes=(float,))
check_str(name='setting', value=setting, options=('pseudo', "from_scratch"))
if setting is not None:
check_str(name='setting', value=setting, options=('pseudo', "from_scratch",))
check_valid_boolean(value=[continuing], source=select_labelling_video.__name__)


Expand Down
39 changes: 39 additions & 0 deletions simba/mixins/statistics_mixin.py
Original file line number Diff line number Diff line change
Expand Up @@ -3931,6 +3931,45 @@ def calinski_harabasz(x: np.ndarray, y: np.ndarray) -> float:
else:
return extra_dispersion * (x.shape[0] - n_labels) / denominator

def silhouette_score(self, x: np.ndarray, y: np.ndarray) -> float:
"""
Compute the silhouette score for the given dataset and labels.
:param np.ndarray x: The dataset as a 2D NumPy array of shape (n_samples, n_features).
:param np.ndarray y: Cluster labels for each data point as a 1D NumPy array of shape (n_samples,).
:returns: The average silhouette score for the dataset.
:rtype: float
:example:
>>> x, y = make_blobs(n_samples=10000, n_features=400, centers=5, cluster_std=10, center_box=(-1, 1))
>>> score = silhouette_score(x=x, y=y)
>>> from sklearn.metrics import silhouette_score as sklearn_silhouette # SKLEARN ALTERNATIVE
>>> score_sklearn = sklearn_silhouette(x, y)
"""
dists = cdist(x, x)
results = np.full(x.shape[0], fill_value=-1.0, dtype=np.float32)
cluster_ids = np.unique(y)
cluster_indices = {cluster_id: np.argwhere(y == cluster_id).flatten() for cluster_id in cluster_ids}

for i in range(x.shape[0]):
intra_idx = cluster_indices[y[i]]
if len(intra_idx) <= 1:
a_i = 0.0
else:
intra_distances = dists[i, intra_idx]
a_i = np.sum(intra_distances) / (intra_distances.shape[0] - 1)
b_i = np.inf
for cluster_id in cluster_ids:
if cluster_id != y[i]:
inter_idx = cluster_indices[cluster_id]
inter_distances = dists[i, inter_idx]
b_i = min(b_i, np.mean(inter_distances))
results[i] = (b_i - a_i) / max(a_i, b_i)

return np.mean(results)

@staticmethod
def adjusted_rand(x: np.ndarray, y: np.ndarray) -> float:
"""
Expand Down

0 comments on commit 3c9087d

Please sign in to comment.