-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
236 lines (176 loc) · 8.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import random
import numpy as np
from tqdm import tqdm
from torch.optim import Adam
from models.cnn13 import CNN13
from loss import mix_match_loss
from loss import pseudo_label_loss
from optimizers.weight_ema import WeightEMA
from models.wideresnet import WideResNet
from sklearn.metrics import accuracy_score
from config import load_arguments, load_config
from semi_supervised.mix_match import MixMatch
from datasets.data_loaders import load_train_data
from semi_supervised.pseudo_label import PseudoLabel
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
arguments = load_arguments()
config = load_config(arguments.config)
train_labeled_dataloader, train_unlabeled_dataloader, validation_dataloader = load_train_data(config)
model, ema_model, optimizer, ema_optimizer, semi_supervised, semi_supervised_loss = load(config)
metrics = {
'train_loss': 0,
'train_accuracy': 0,
'train_steps': 0,
'validation_accuracy': 0,
'validation_steps': 0
}
best_validation_accuracy = config.best_test_accuracy
for epoch_step in range(config.epoch_step + 1, config.epochs + 1):
train_labeled_dataloader_iterator = iter(train_labeled_dataloader)
train_unlabeled_dataloader_iterator = iter(train_unlabeled_dataloader) if train_unlabeled_dataloader else None
train_progress_bar = tqdm(range(config.iterations))
for batch_step in train_progress_bar:
inputs_x, targets_x, ub, train_labeled_dataloader_iterator, train_unlabeled_dataloader_iterator = on_train_batch_start(
train_labeled_dataloader, train_unlabeled_dataloader, train_labeled_dataloader_iterator,
train_unlabeled_dataloader_iterator, config)
train_step(epoch_step, batch_step, inputs_x, targets_x, ub,
semi_supervised, semi_supervised_loss, model,
ema_model, optimizer, ema_optimizer, metrics, config)
on_train_batch_end(epoch_step, inputs_x, targets_x, ema_model, metrics, train_progress_bar)
test_progress_bar = tqdm(enumerate(validation_dataloader), total=len(validation_dataloader))
for batch_step, batch in test_progress_bar:
validation_step(ema_model, batch, metrics, config)
on_validation_batch_end(epoch_step, metrics, test_progress_bar)
best_validation_accuracy = on_epoch_end(epoch_step, best_validation_accuracy, model, ema_model, optimizer,
config, metrics)
metrics = {
'train_loss': 0,
'train_accuracy': 0,
'train_steps': 0,
'validation_accuracy': 0,
'validation_steps': 0
}
def train_step(epoch_step, batch_step, inputs_x, targets_x, ub, semi_supervised, semi_supervised_loss,
model, ema_model, optimizer, ema_optimizer, metrics, config):
x_logits, x_targets, u_logits, u_targets = semi_supervised(inputs_x, targets_x, ub, model, ema_model, config)
loss = semi_supervised_loss(epoch_step, batch_step, x_logits, x_targets, u_logits, u_targets, config)
metrics['train_loss'] += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_optimizer.step()
apply_weight_decay(model, config)
def apply_weight_decay(model, config):
weight_decay = 0.02 * config.learning_rate
for param in model.state_dict().values():
if param.dtype == torch.float32:
param.mul_(1 - weight_decay)
def validation_step(model, batch, metrics, config):
model.eval()
inputs, labels = batch
inputs, labels = inputs.to(config.device), labels.to(config.device)
with torch.no_grad():
logits = model(inputs)
labels = labels.detach().cpu()
predictions = torch.max(logits, axis=1)[1].detach().cpu()
metrics['validation_steps'] += 1
metrics['validation_accuracy'] += accuracy_score(labels, predictions)
def on_train_batch_start(train_labeled_dataloader, train_unlabeled_dataloader, train_labeled_dataloader_iterator,
train_unlabeled_dataloader_iterator, config):
try:
inputs_x, targets_x = train_labeled_dataloader_iterator.next()
except StopIteration as e:
train_labeled_dataloader_iterator = iter(train_labeled_dataloader)
inputs_x, targets_x = train_labeled_dataloader_iterator.next()
try:
ub = [] if not train_unlabeled_dataloader_iterator else train_unlabeled_dataloader_iterator.next()[0]
except StopIteration as e:
train_unlabeled_dataloader_iterator = iter(train_unlabeled_dataloader)
ub = [] if not train_unlabeled_dataloader_iterator else train_unlabeled_dataloader_iterator.next()[0]
targets_x = torch.zeros(config.batch_size, config.dataset_classes).scatter_(1, targets_x.view(-1, 1), 1)
inputs_x, targets_x = inputs_x[0].to(config.device), targets_x.to(config.device)
ub = [u_hat.to(config.device) for u_hat in ub]
return inputs_x, targets_x, ub, train_labeled_dataloader_iterator, train_unlabeled_dataloader_iterator
def on_train_batch_end(epoch_step, x_hat, y, ema_model, metrics, train_progress_bar):
ema_model.eval()
ema_logits = ema_model(x_hat)
labels = np.argmax(y.detach().cpu(), axis=1)
predictions = torch.max(ema_logits, axis=1)[1].detach().cpu()
metrics['train_steps'] += 1
metrics['train_accuracy'] += accuracy_score(labels, predictions)
train_loss = metrics['train_loss'] / metrics['train_steps']
train_accuracy = metrics['train_accuracy'] / metrics['train_steps']
train_progress_bar.set_description(
'Epoch:{} | train_accuracy {:.3f} | train_loss {:.3f}'.format(
epoch_step, train_accuracy, train_loss)
)
def on_validation_batch_end(epoch_step, metrics, test_progress_bar):
validation_accuracy = metrics['validation_accuracy'] / metrics['validation_steps']
test_progress_bar.set_description(
'Epoch:{} | validation_accuracy {:.3f}'.format(
epoch_step, validation_accuracy)
)
def on_epoch_end(epoch_step, best_validation_accuracy, model, ema_model, optimizer, config, metrics):
validation_accuracy = metrics['validation_accuracy'] / metrics['validation_steps']
if validation_accuracy > best_validation_accuracy:
best_validation_accuracy = validation_accuracy
checkpoint_to_save = {
'epoch_step': epoch_step,
'learning_rate': config.learning_rate,
'ema_decay': config.ema_decay,
'lambda_u': config.lambda_u,
'alpha': config.alpha,
't': config.t,
'k': config.k,
'ema': config.ema,
'mix_up': config.mix_up,
'epochs': config.epochs,
'batch_size': config.batch_size,
'iterations': config.iterations,
'labeled_data': config.labeled_data,
'model_state': model.state_dict(),
'ema_model_state': ema_model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'best_test_accuracy': best_validation_accuracy
}
checkpoint_to_save_path = f'./experiments/checkpoint-{config.dataset_name}-{config.labeled_data}-{config.k}-{config.t}-{config.mix_up}-{config.ema}.bin'
torch.save(checkpoint_to_save, checkpoint_to_save_path)
print(f'Checkpoint save in {checkpoint_to_save_path} with validation_accuracy:{best_validation_accuracy}')
return best_validation_accuracy
def load(config):
if config.model == 'wideresnet':
model = WideResNet(num_classes=config.dataset_classes)
ema_model = WideResNet(num_classes=config.dataset_classes)
else:
model = CNN13(num_classes=config.dataset_classes)
ema_model = CNN13(num_classes=config.dataset_classes)
if config.semi_supervised == 'mix_match':
semi_supervised = MixMatch(config)
semi_supervised_loss = mix_match_loss
elif config.semi_supervised == 'pseudo_label':
semi_supervised = PseudoLabel(config)
semi_supervised_loss = pseudo_label_loss
model.to(config.device)
ema_model.to(config.device)
torch.backends.cudnn.benchmark = True
optimizer = Adam(model.parameters(), lr=config.learning_rate)
ema_optimizer = WeightEMA(model, ema_model, alpha=config.ema_decay)
if config.resume:
checkpoint = torch.load(config.checkpoint_path, map_location=config.device)
model.load_state_dict(checkpoint['model_state'])
ema_model.load_state_dict(checkpoint['ema_model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
# optimizer state should be moved to corresponding device
for optimizer_state in optimizer.state.values():
for k, v in optimizer_state.items():
if isinstance(v, torch.Tensor):
optimizer_state[k] = v.to(config.device)
return model, ema_model, optimizer, ema_optimizer, semi_supervised, semi_supervised_loss
if __name__ == '__main__':
main()