-
Notifications
You must be signed in to change notification settings - Fork 2
/
projector.py
297 lines (225 loc) · 11.5 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
import argparse
import math
import os
import random
from glob import glob
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
import lpips
from model import Generator, Encoder
from custom.utils import *
from custom.dataset import BrainCT
device = 'cuda' if torch.cuda.is_available() else 'cpu'
random_seed = 999
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.benchmark = True # cudnn finds the best algorithm to use for your hardware.
np.random.seed(random_seed)
random.seed(random_seed)
def init_noise(g_ema_module, b, requires_grad = False):
return [noise.repeat(b, 1, 1, 1).normal_().requires_grad_(requires_grad) for noise in g_ema_module.make_noise()]
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def in_domain_loss_(latent, latent_e):
mask = torch.abs(latent) - torch.abs(latent_e) > 0
return ((F.mse_loss(latent, latent_e, reduction = "none")) * mask).mean()
def w2p(w, w_mean, pca_components, pca_stds):
w_c = F.leaky_relu(w, 5) - w_mean
p = w_c.unsqueeze(2) @ pca_components
p_norm = p / pca_stds
return p_norm.squeeze(2)
def p2w(p, w_mean, pca_components, pca_stds):
return F.leaky_relu(w_mean + ((p.unsqueeze(2) * pca_stds) @ torch.transpose(pca_components, 2, 3)).squeeze(2),
negative_slope = 0.2)
def my_args():
parser = argparse.ArgumentParser(description='Projection', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--query_save_path', type=str, required=True)
parser.add_argument('--save_dir', type=str, default="test_results")
parser.add_argument('--ckpt', type = str, default = "checkpoint.pth")
parser.add_argument('--latent_dim', type=int, default=512)
parser.add_argument('--lr_w', type=float, default=0.1)
parser.add_argument('--lr_n', type=float, default=2)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers',type=int, default=12)
parser.add_argument('--step_w', type=int, default=100)
parser.add_argument('--step_n', type=int, default=100)
parser.add_argument('--filter_size',type=int, default=19)
parser.add_argument('--thres', type=int, default=5)
return parser.parse_args()
def project(args):
"set model"
g_ema = Generator(size=512, style_dim=512, n_mlp=8)
encoder = Encoder(w_plus = True)
"set pretrained weights"
ckpt = torch.load(args.ckpt)
g_ema.load_state_dict(ckpt['g_ema'])
encoder.load_state_dict(ckpt['e'])
latent_statistics = load_obj("latent_statistics.pkl")
"""Set model to Device"""
device = "cuda" if torch.cuda.is_available() else "cpu"
args.n_gpu = torch.cuda.device_count()
is_distributed = args.n_gpu > 1
if is_distributed:
g_ema = torch.nn.DataParallel(g_ema)
encoder = torch.nn.DataParallel(encoder)
g_ema = g_ema.to(device)
encoder = encoder.to(device)
"set eval mode"
g_ema.eval()
encoder.eval()
g_ema_module = g_ema.module if torch.cuda.device_count() > 1 else g_ema
"lpips loss"
percept = lpips.PerceptualLoss(model='net-lin', net="vgg", use_gpu=device.startswith(device))
args.step = args.step_w + args.step_n
transform = transforms.Compose(
[
transforms.Resize(512),
transforms.CenterCrop(512),
transforms.ToTensor(), # scale by 1/255 and make the format to tensor
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), # set img range [-1,1]
]
)
"""Set directories"""
mkdir('results')
result_dir = os.path.join('results', args.save_dir)
mkdir(result_dir)
print("-" * 20)
print(args.save_dir)
query_save_dirs = glob(os.path.join(args.query_save_path, "*"))
for query_save_dir in query_save_dirs:
patient_id = query_save_dir.split('/')[-1]
inference_dir = os.path.join(result_dir, patient_id)
mkdir(inference_dir)
print(f"[INFO] query images = {query_save_dir}")
"""load data"""
brainct_dataset = BrainCT(query_save_dir, transform, reverse = True)
brainct_dataloader = DataLoader(brainct_dataset,
batch_size = args.batch_size,
shuffle = False,
num_workers = args.num_workers,
drop_last = False,
pin_memory = True)
n_imgs = len(brainct_dataset)
n_latent = g_ema_module.n_latent
history = {"scores" : np.zeros([args.step, n_imgs])}
for fNums, fNames, img_reals, bet_masks in brainct_dataloader:
img_reals = img_reals.to(device, non_blocking=True)
bet_masks = bet_masks.bool().to(device, non_blocking=True)
b,c,h,w = img_reals.shape
bet_normalizer = np.array([1 / area.item() if area.item() else 0 for area in bet_masks.reshape(b,-1).float().sum(1)])
voting_maps = torch.zeros_like(bet_masks)
pred_maps = torch.zeros_like(bet_masks)
w_means = latent_statistics["mean"][fNums].float().to(device, non_blocking=True) # [b, n_latent, latent_dim]
pca_stds = latent_statistics["pca_explained_variance"][fNums].float().to(device, non_blocking=True).unsqueeze(2) ** 0.5
pca_components = latent_statistics["pca_components"][fNums].float().to(device, non_blocking=True)
"SET LATENT CODES"
with torch.no_grad():
"set initial latent by encoder"
latent_e = encoder(img_reals)
if latent_e.shape == [b, 512]:
latent_e = latent_e.unsqueeze(1).repeat(1, n_latent, 1)
else:
latent_e = latent_e.reshape(b, n_latent, 512)
latent = w2p(latent_e, w_means, pca_components, pca_stds)
img_targets = img_reals
"load filter"
filter = MedianPool2d(args.filter_size)
filter = torch.nn.DataParallel(filter).to(device) if args.n_gpu > 1 else filter.to(device)
filter.eval()
"set optimizer for latent"
latent.requires_grad_(True)
optim_w = optim.Adam([latent], lr = args.lr_w)
"loss fuctions"
pbar = tqdm(range(args.step))
for step in pbar:
if step < args.step_w:
"update learning rate"
t = step / args.step_w
lr_w = get_lr(t, args.lr_w)
optim_w.param_groups[0]["lr"] = lr_w
img_fakes, _ = g_ema([p2w(latent, w_means, pca_components, pca_stds)],
input_is_latent=True,)
"forward"
p_loss = percept(to256(img_targets), to256(img_fakes)).reshape(b,-1).mean(1)
with torch.no_grad():
latent_e = encoder(img_reals)
if latent_e.shape == [b, 512]:
latent_e = latent_e.unsqueeze(1).repeat(1, n_latent, 1)
else:
latent_e = latent_e.reshape(b, n_latent, 512)
latent_e = w2p(latent_e, w_means, pca_components, pca_stds)
in_domain_loss = in_domain_loss_(latent, latent_e)
loss_w = (p_loss + in_domain_loss).mean()
"backward"
optim_w.zero_grad(set_to_none=True)
loss_w.backward()
optim_w.step()
description = "[w]"
description += f'p_loss: {p_loss.mean().item():.4f};'
description += f'in_domain_loss: {in_domain_loss.mean().item():.4f};'
description += f"lr = {lr_w:.5f}"
pbar.set_description(description)
else:
if step == args.step_w:
latent_in = latent.detach().clone().requires_grad_(False)
latent_in = p2w(latent_in, w_means, pca_components, pca_stds)
noises = init_noise(g_ema_module, b, requires_grad=True)
img_refs = img_fakes.detach().clone()
optim_n = optim.Adam(noises, lr = args.lr_n)
t = (step - args.step_w) / args.step_n
lr_n = get_lr(t, args.lr_n)
optim_n.param_groups[0]["lr"] = lr_n
img_fakes, _ = g_ema([latent_in],
input_is_latent = True,
noise=noises)
with torch.no_grad():
ref_mask = pred_maps.unsqueeze(1)
img_targets = img_reals * (~ref_mask) + img_refs * ref_mask
"forward"
loss_n = F.l1_loss(img_targets, img_fakes, reduction="mean")
"backward"
optim_n.zero_grad(set_to_none=True)
loss_n.backward()
optim_n.step()
description = f"[n] loss: {loss_n.item():.4f}; lr = {lr_n:.5f}"
pbar.set_description(description)
with torch.no_grad():
img_reals_hu = normalize_hu(img_reals)
img_fakes_hu = normalize_hu(img_fakes)
diff_maps = (img_reals_hu - img_fakes_hu) * bet_masks
diff_maps_filtered = torch.cat([filter(diff_maps[args.n_gpu * i: args.n_gpu * (i + 1)].unsqueeze(0)).squeeze(0)
for i in range(math.ceil(b / args.n_gpu))]) * bet_masks
residual_maps_filtered = torch.abs(diff_maps_filtered)
voting_maps = voting(residual_maps_filtered, voting_maps, args.thres)
pred_maps = voting_maps > step
voting_scores = tensor_to_np((voting_maps * residual_maps_filtered).reshape(b,-1).sum(1))
history["scores"][step][fNums] = voting_scores * bet_normalizer
"save figure"
img_reals_np = make_image(img_reals)
img_fakes, _ = g_ema([latent_in], input_is_latent = True)
img_fakes_np = make_image(img_fakes)
pred_maps_np = tensor_to_np(pred_maps)
figure_save_dir = os.path.join(inference_dir, "figure")
for b_ in range(b):
"save individual figure"
save_summary_figure(img_reals_np[b_],
img_fakes_np[b_],
pred_maps_np[b_],
figure_save_dir,
fNames[b_])
history_dir = os.path.join(inference_dir, 'history')
mkdirs(history_dir)
save_obj(history, os.path.join(history_dir,'history.pkl'))
if __name__ == '__main__':
args = my_args()
project(args)