-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_parallel.py
133 lines (117 loc) · 4.2 KB
/
train_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import hmm as hmm
import pandas as pd
import numpy as np
from group import Group
from membership import MembershipVector
from trajectory import Trajectory
from hmmlearn.utils import iter_from_X_lengths
import multiprocessing as mp
from functools import partial
import datetime
import time
import pickle
N_STATES = 10
GROUP_NUM = 10
def train_model_for_group(groupId, models, member, t):
data, length, proba = t.getData(groupId, member)
# print(len(length))
models[groupId].set_weights(proba)
models[groupId].fit(data, length)
print(str(groupId) + "th group done")
return models[groupId]
def update_group(i, group):
print("Updating group :" + str(i))
return group[i].update()
def main_multiprocess():
trajectorydata = pd.read_csv("./trainTrajectory_smaller.csv")
member = MembershipVector(trajectorydata['UserID'].unique(), GROUP_NUM)
t = Trajectory(trajectorydata)
models = [hmm.GroupLevelHMM(n_components=N_STATES, init_params='mce')
for i in range(GROUP_NUM)]
log = open('./logs/log_' + str(datetime.datetime.now()) + '.txt', 'w')
for n in range(30):
print("STAGE : " + str(n+1))
p = mp.Pool(processes=mp.cpu_count()-1)
# iterate groups
start = time.time()
manager = mp.Manager()
model_list = manager.list(models)
processes = []
fit_model=partial(train_model_for_group, models=models, member=member, t=t)
model_list = p.map(fit_model, range(0, GROUP_NUM) )
models = list(model_list)
p.close()
p.join()
print("Training complete")
# Grouping and update
# group_list = []
# for i in range(0, GROUP_NUM):
# group_list.append(Group(hmm=models[i], membership=member, trajectory=t, groupId=i))
# manager = mp.Manager()
# m_group_list = manager.list(group_list)
# p = mp.Pool(processes=mp.cpu_count()-1)
# m_update_group=partial(update_group, group=m_group_list)
# updated_memberships = p.map(m_update_group, range(0, GROUP_NUM))
# print(updated_memberships)
# p.close()
# p.join()
for i in range(0, GROUP_NUM):
g = Group(hmm=models[i], membership=member, trajectory=t, groupId=i)
member = g.update()
print("Grouping complete")
end = time.time()
print('total time (s)= ' + str(end-start))
groups = np.zeros(GROUP_NUM)
for i in trajectorydata['UserID']:
groups[member.getProbOfUser(i).argmax()] += 1
print(groups)
eval_log = eval_group_hmms(member, models)
print(eval_log)
log = open('./logs/log_' + str(datetime.datetime.now()) + '.txt', 'w')
log.write(str(eval_log))
log.write(str(groups))
log.close()
for i in range(0, GROUP_NUM):
output = open('./models/model_iter_'+str(n)+'_model_'+ str(i)+ '_' + str(datetime.datetime.now()) + '.pkl', 'wb')
s = pickle.dump(models[i], output)
output.close()
def get_score_for_all_groups(index, data, prob_list, models):
prob_sum = 0
for g in range(0, GROUP_NUM):
prob_sum += np.exp(models[g].score(data[index])) * prob_list[index][g]
return prob_sum / GROUP_NUM
def eval_group_hmms(membership, models):
trajectorydata = pd.read_csv("./testTrajectory_smaller.csv")
t = Trajectory(trajectorydata)
data, length, prob_list = t.getDataWithAllGroups(membership)
index = 0
test_set = []
all_probs = [0] * len(length)
for i, j in iter_from_X_lengths(data, length):
# prob_sum = 0
# for g in range(0, GROUP_NUM):
# prob_sum += np.exp(models[g].score(data[i:j])) * prob_list[index][g]
# avg_prob += prob_sum / GROUP_NUM
test_set.append(data[i:j])
manager = mp.Manager()
m_all_probs = manager.list(all_probs)
p = mp.Pool(processes=mp.cpu_count()-1)
get_score=partial(get_score_for_all_groups, data=test_set, prob_list=prob_list, models=models)
m_all_probs = p.map(get_score, range(0, len(length)))
probs_sum = sum(list(m_all_probs))
p.close()
p.join()
return np.log(probs_sum / len(length))
def eval_group_hmms_old(membership, models):
trajectorydata = pd.read_csv("./testTrajectory_final.csv")
t = Trajectory(trajectorydata)
data, length, prob_list = t.getDataWithAllGroups(membership)
index = 0
avg_prob = 0
for i, j in iter_from_X_lengths(data, length):
prob_sum = 0
for g in range(0, GROUP_NUM):
prob_sum += np.exp(models[g].score(data[i:j])) * prob_list[index][g]
avg_prob += prob_sum / GROUP_NUM
index += 1
return np.log(avg_prob / len(length))