-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
190 lines (157 loc) · 5.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import hmm as hmm
import pandas as pd
import numpy as np
from group import Group
from membership import MembershipVector
from trajectory import Trajectory
from hmmlearn.utils import iter_from_X_lengths
import multiprocessing as mp
from functools import partial
import datetime
import time
import pickle
N_STATES = 10
GROUP_NUM = 10
def main():
trajectorydata = pd.read_csv("./trainTrajectory.csv")
member = MembershipVector(trajectorydata['UserID'].unique(), GROUP_NUM)
t = Trajectory(trajectorydata)
models = [hmm.GroupLevelHMM(n_components=N_STATES, init_params='mce')
for i in range(GROUP_NUM)]
for n in range(10):
print("STAGE : " + str(n))
# iterate through groups
for i in range(0, GROUP_NUM):
print("LEARNING FOR GROUP " + str(i))
data, length, proba = t.getData(i, member)
models[i].set_weights(proba)
models[i].fit(data, length)
print("Grouping...")
# Grouping and update
for i in range(0, GROUP_NUM):
g = Group(hmm=models[i], membership=member, trajectory=t, groupId=i)
member = g.update()
print(eval_group_hmms(member, models))
def get_score_for_all_groups(index, data, prob_list, models):
prob_sum = 0
for g in range(0, GROUP_NUM):
prob_sum += np.exp(models[g].score(data[index])) * prob_list[index][g]
return prob_sum / GROUP_NUM
def eval_group_hmms(membership, models):
trajectorydata = pd.read_csv("./testTrajectory_final.csv")
t = Trajectory(trajectorydata)
data, length, prob_list = t.getDataWithAllGroups(membership)
index = 0
test_set = []
all_probs = [0] * len(length)
for i, j in iter_from_X_lengths(data, length):
# prob_sum = 0
# for g in range(0, GROUP_NUM):
# prob_sum += np.exp(models[g].score(data[i:j])) * prob_list[index][g]
# avg_prob += prob_sum / GROUP_NUM
test_set.append(data[i:j])
manager = mp.Manager()
m_all_probs = manager.list(all_probs)
p = mp.Pool(processes=mp.cpu_count()-1)
get_score=partial(get_score_for_all_groups, data=test_set, prob_list=prob_list, models=models)
m_all_probs = p.map(get_score, range(0, len(length)))
probs_sum = sum(list(m_all_probs))
p.close()
p.join()
return np.log(probs_sum / len(length))
def train_model_for_group(groupId, models, member, t):
data, length, proba = t.getData(groupId, member)
models[groupId].set_weights(proba)
models[groupId].fit(data, length)
print(str(groupId) + "th group done")
return models[groupId]
def update_group(i, group):
return group[i].update()
def main_multiprocess():
trajectorydata = pd.read_csv("./trainTrajectory_final.csv")
member = MembershipVector(trajectorydata['UserID'].unique(), GROUP_NUM)
t = Trajectory(trajectorydata)
models = [hmm.GroupLevelHMM(n_components=N_STATES, init_params='mce')
for i in range(GROUP_NUM)]
log = open('./logs/log_' + str(datetime.datetime.now()) + '.txt', 'w')
for n in range(30):
print("STAGE : " + str(n+1))
p = mp.Pool(processes=mp.cpu_count()-1)
# iterate groups
start = time.time()
manager = mp.Manager()
model_list = manager.list(models)
processes = []
fit_model=partial(train_model_for_group, models=models, member=member, t=t)
model_list = p.map(fit_model, range(0, GROUP_NUM) )
p.close()
p.join()
models = list(model_list)
print("Training complete")
# Grouping and update
# group_list = []
# for i in range(0, GROUP_NUM):
# group_list.append(Group(hmm=models[i], membership=member, trajectory=t, groupId=i))
# manager = mp.Manager()
# m_group_list = manager.list(group_list)
# p = mp.Pool(processes=mp.cpu_count()-1)
# m_update_group=partial(update_group, group=m_group_list)
# m_group_list = p.map(m_update_group, range(0, GROUP_NUM))
# group_list = list(m_group_list)
# p.close()
# p.join
for i in range(0, GROUP_NUM):
g = Group(hmm=models[i], membership=member, trajectory=t, groupId=i)
member = g.update()
print("Complete")
end = time.time()
print('total time (s)= ' + str(end-start))
groups = np.zeros(GROUP_NUM)
for i in trajectorydata['UserID']:
groups[member.getProbOfUser(i).argmax()] += 1
print(groups)
eval_log = eval_group_hmms(member, models)
print(eval_log)
log = open('./logs/log_' + str(datetime.datetime.now()) + '.txt', 'w')
log.write(str(eval_log))
log.write(str(groups))
log.close()
for i in range(0, GROUP_NUM):
output = open('./models/model_iter_'+str(n)+'_model_'+ str(i)+ '_' + str(datetime.datetime.now()) + '.pkl', 'wb')
s = pickle.dump(models[i], output)
output.close()
def main_test():
trajectorydata = pd.read_csv("./trainTrajectory_final.csv")
member = MembershipVector(trajectorydata['UserID'].unique(), GROUP_NUM)
t = Trajectory(trajectorydata)
models = [hmm.GroupLevelHMM(n_components=N_STATES, init_params='mce')
for i in range(GROUP_NUM)]
log = open('./logs/log_' + str(datetime.datetime.now()) + '.txt', 'w')
for n in range(30):
print("STAGE : " + str(n+1))
# iterate through groups
for i in range(0, GROUP_NUM):
print("LEARNING FOR GROUP " + str(i))
data, length, proba = t.getData(i, member)
models[i].set_weights(proba)
models[i].fit(data, length)
print("Grouping...")
# Grouping and update
for i in range(0, GROUP_NUM):
g = Group(hmm=models[i], membership=member, trajectory=t, groupId=i)
member = g.update()
groups = np.zeros(GROUP_NUM)
for i in trajectorydata['UserID']:
groups[member.getProbOfUser(i).argmax()] += 1
print(groups)
eval_log = eval_group_hmms(member, models)
print(eval_log)
log.write(str(eval_log) + "\n")
log.write(str(groups) + "\n\n")
log.close()
for i in range(0, GROUP_NUM):
output = open('./models/model_iter_'+str(n)+'_model_'+ str(i)+ '_' + str(datetime.datetime.now()) + '.pkl', 'wb')
s = pickle.dump(models[i], output)
output.close()
if __name__ == '__main__':
main_multiprocess()