-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpreview_annotation.py
127 lines (110 loc) · 4.3 KB
/
preview_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# -*- coding: utf-8 -*-
#########################################################
#
# Alejandro German
#
# https://github.com/seralexger/clothing-detection-ecommerce-dataset
#
#########################################################
from __future__ import print_function
import sys
import numpy as np
from PIL import Image
import json
import glob
import argparse
import random
import argparse
import matplotlib
import os
import shutil
matplotlib.use('TKAgg',warn=False, force=True)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
ap = argparse.ArgumentParser()
ap.add_argument("-d","--dataset", help="Dataset folder")
ap.add_argument("-a","--annotation", help="Annotation folder")
ap.add_argument("-r","--remove_folder", help="Remove folder")
args = vars(ap.parse_args())
idx = 0
img_list = list(glob.glob(args['dataset']+'/*'))
def press(event):
global idx, img_list, ax
sys.stdout.flush()
if event.key == 'q':
exit(0)
if event.key == 'r':
if not args['remove_folder']:
print('Please write in args -r and the remove_folder')
else:
if not os.path.exists(args['remove_folder']):
os.makedirs(args['remove_folder'])
img_path = img_list[idx]
shutil.move(img_path, args['remove_folder']+'/'+img_path.split('/')[-1])
img_list = list(glob.glob(args['dataset']+'/*'))
ax.clear()
img_path = img_list[idx]
img_data = json.loads(open(args['annotation']+'/dataset'+'_'+img_path.split('/')[-2]+'_'+img_path.split('/')[-1].split('.')[0]+'.json').read())
normal_img = Image.open(img_path)
color_dic = {}
for index,item in enumerate(img_data['arr_boxes']):
if item['class'] not in color_dic:
color_dic[item['class']] = (random.uniform(0.0,1.0), random.uniform(0.0,1.0),random.uniform(0.0,1.0))
box = patches.Rectangle((item['x'], item['y']), item['width'], item['height'],linewidth=2,edgecolor=color_dic[item['class']] ,facecolor='none', label = item['class'])
ax = fig.add_subplot(111)
ax.add_patch(box)
ax.legend()
ax.imshow(normal_img)
ax.axis('off')
fig.canvas.draw()
if event.key == 'n':
if idx != len(img_list):
idx+=1
ax.clear()
img_path = img_list[idx]
img_data = json.loads(open(args['annotation']+'/dataset'+'_'+img_path.split('/')[-2]+'_'+img_path.split('/')[-1].split('.')[0]+'.json').read())
normal_img = Image.open(img_path)
color_dic = {}
for index,item in enumerate(img_data['arr_boxes']):
if item['class'] not in color_dic:
color_dic[item['class']] = (random.uniform(0.0,1.0), random.uniform(0.0,1.0),random.uniform(0.0,1.0))
box = patches.Rectangle((item['x'], item['y']), item['width'], item['height'],linewidth=2,edgecolor=color_dic[item['class']] ,facecolor='none', label = item['class'])
ax = fig.add_subplot(111)
ax.add_patch(box)
ax.legend()
ax.imshow(normal_img)
ax.axis('off')
fig.canvas.draw()
if event.key == 'b':
if idx != 0:
idx-=1
ax.clear()
img_path = img_list[idx]
img_data = json.loads(open(args['annotation']+'/dataset'+'_'+img_path.split('/')[-2]+'_'+img_path.split('/')[-1].split('.')[0]+'.json').read())
normal_img = Image.open(img_path)
color_dic = {}
for index,item in enumerate(img_data['arr_boxes']):
if item['class'] not in color_dic:
color_dic[item['class']] = (random.uniform(0.0,1.0), random.uniform(0.0,1.0),random.uniform(0.0,1.0))
box = patches.Rectangle((item['x'], item['y']), item['width'], item['height'],linewidth=2,edgecolor=color_dic[item['class']] ,facecolor='none', label = item['class'])
ax = fig.add_subplot(111)
ax.add_patch(box)
ax.legend()
ax.imshow(normal_img)
ax.axis('off')
fig.canvas.draw()
fig, ax = plt.subplots()
fig.canvas.mpl_connect('key_press_event', press)
img_path = img_list[idx]
img_data = json.loads(open(args['annotation']+'/dataset'+'_'+img_path.split('/')[-2]+'_'+img_path.split('/')[-1].split('.')[0]+'.json').read())
normal_img = Image.open(img_path)
color_dic = {}
for index,item in enumerate(img_data['arr_boxes']):
if item['class'] not in color_dic:
color_dic[item['class']] = (random.uniform(0.0,1.0), random.uniform(0.0,1.0),random.uniform(0.0,1.0))
box = patches.Rectangle((item['x'], item['y']), item['width'], item['height'],linewidth=2,edgecolor=color_dic[item['class']] ,facecolor='none', label = item['class'])
ax.add_patch(box)
ax.legend()
ax.imshow(normal_img)
ax.axis('off')
plt.show()