-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper.py
165 lines (142 loc) · 5.91 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
You should not edit helper.py as part of your submission.
This file is used primarily to download vgg if it has not yet been,
give you the progress of the download, get batches for your training,
as well as around generating and saving the image outputs.
"""
import re
import random
import numpy as np
import os.path
import scipy.misc
import shutil
import zipfile
from datetime import datetime
import urllib.request
import json
import tensorflow as tf
from glob import glob
from tqdm import tqdm
class DLProgress(tqdm):
"""
Report download progress to the terminal.
:param tqdm: Information fed to the tqdm library to estimate progress.
"""
last_block = 0
def hook(self, block_num=1, block_size=1, total_size=None):
"""
Store necessary information for tracking progress.
:param block_num: current block of the download
:param block_size: size of current block
:param total_size: total download size, if known
"""
self.total = total_size
self.update((block_num - self.last_block) * block_size) # Updates progress
self.last_block = block_num
def retrieve_direct_yandex_disk_url(url):
"""
The links Yandex.Disk provides after file sharing are not direct. To obtain a direct link, a special procedure
should be performed.
:param url: public non-direct link to file
:return: the direct link to file
"""
# getting the direct link
request_direct_link = \
"https://cloud-api.yandex.net/v1/disk/public/resources/download?public_key={}" \
.format(url)
with urllib.request.urlopen(request_direct_link) as resp:
direct_link = json.loads(resp.read().decode('utf-8'))['href']
return direct_link
def download_file(direct_url, file):
"""
Downloads files.
:param direct_url: direct link to file to download.
:param file: file name in the local file system
"""
print(datetime.now(),
"Started downloading", file, "file using", direct_url, "link.")
with DLProgress(unit='B', unit_scale=True, miniters=1) as pbar:
urllib.request.urlretrieve(direct_url, file, pbar.hook)
print(datetime.now(), "Finished downloading", file, "file.")
def extract_zip_archive(archive, directory):
"""
Extracts ZIP archive.
:param archive: archive path in the local file system
:param directory: directory into which extract the archive
"""
print(datetime.now(), "Started extracting", archive, "file.")
with zipfile.ZipFile(archive, 'r') as zip_file:
zip_file.extractall(directory)
print(datetime.now(), "Finished extracting", archive, "file.")
def maybe_download_dataset_from_yandex_disk(dataset):
"""
Downloads the selected dataset from Yandex.Disk.
:param dataset: Dataset object
"""
# download dataset if needed from Yandex.Disk
if not (os.path.isdir(dataset.data_dir)):
direct_link = retrieve_direct_yandex_disk_url(dataset.yandex_disk_url)
download_file(direct_link, dataset.archive_path)
extract_zip_archive(dataset.archive_path, dataset.data_root_dir)
# Remove zip file to save space
os.remove(dataset.archive_path)
def maybe_download_pretrained_vgg_from_yandex_disk(data_dir):
"""
Download and extract pretrained vgg model if it doesn't exist
:param data_dir: Directory to download the model to
"""
yandex_disk_url = "https://yadi.sk/d/aTzGJtuzdtYE3Q"
vgg_path = os.path.join(data_dir, 'vgg')
vgg_filename = os.path.join(data_dir, 'vgg.zip')
vgg_files = [
os.path.join(vgg_path, 'variables/variables.data-00000-of-00001'),
os.path.join(vgg_path, 'variables/variables.index'),
os.path.join(vgg_path, 'saved_model.pb')]
missing_vgg_files = [vgg_file for vgg_file in vgg_files if not os.path.exists(vgg_file)]
if missing_vgg_files:
# Clean vgg dir
if os.path.exists(vgg_path):
shutil.rmtree(vgg_path)
direct_link = retrieve_direct_yandex_disk_url(yandex_disk_url)
download_file(direct_link, vgg_filename)
extract_zip_archive(vgg_filename, data_dir)
# Remove zip file to save space
os.remove(vgg_filename)
def gen_batch_function(data_folder, image_shape):
"""
Generate function to create batches of training data
:param data_folder: Path to folder that contains all the datasets
:param image_shape: Tuple - Shape of image
:return:
"""
def get_batches_fn(batch_size):
"""
Create batches of training data
:param batch_size: Batch Size
:return: Batches of training data
"""
# Grab image and label paths
image_paths = glob(os.path.join(data_folder, 'image_2', '*.png'))
label_paths = {
re.sub(r'_(lane|road)_', '_', os.path.basename(path)): path
for path in glob(os.path.join(data_folder, 'gt_image_2', '*_road_*.png'))}
background_color = np.array([255, 0, 0])
# Shuffle training data
random.shuffle(image_paths)
# Loop through batches and grab images, yielding each batch
for batch_i in range(0, len(image_paths), batch_size):
images = []
gt_images = []
for image_file in image_paths[batch_i:batch_i+batch_size]:
gt_image_file = label_paths[os.path.basename(image_file)]
# Re-size to image_shape
image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape)
gt_image = scipy.misc.imresize(scipy.misc.imread(gt_image_file), image_shape)
# Create "one-hot-like" labels by class
gt_bg = np.all(gt_image == background_color, axis=2)
gt_bg = gt_bg.reshape(*gt_bg.shape, 1)
gt_image = np.concatenate((gt_bg, np.invert(gt_bg)), axis=2)
images.append(image)
gt_images.append(gt_image)
yield np.array(images), np.array(gt_images)
return get_batches_fn