-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminigrid_bc_training_script.py
121 lines (86 loc) · 2.85 KB
/
minigrid_bc_training_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from utils.env_utils import minigrid_render, minigrid_get_env
import os, time
import numpy as np
import argparse
import matplotlib.pyplot as plt
import pickle5 as pickle
from imitation.data import rollout
from imitation.util import logger, util
from imitation.algorithms import bc
import gym
import gym_minigrid
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy
from imitation.algorithms import bc
parser = argparse.ArgumentParser()
parser.add_argument(
"--env",
"-e",
help="minigrid gym environment to train on",
default="MiniGrid-LavaCrossingS9N1-v0",
)
parser.add_argument("--run", "-r", help="Run name", default="testing")
parser.add_argument(
"--save-name", "-s", help="BC weights save name", default="saved_testing"
)
parser.add_argument("--traj-name", "-t", help="Run name", default="saved_testing")
parser.add_argument(
"--seed", type=int, help="random seed to generate the environment with", default=1
)
parser.add_argument(
"--nenvs", type=int, help="number of parallel environments to train on", default=1
)
parser.add_argument(
"--nepochs", type=int, help="number of epochs to train till", default=50
)
parser.add_argument(
"--flat",
"-f",
default=False,
help="Partially Observable FlatObs or Fully Observable Image ",
action="store_true",
)
parser.add_argument(
"--show", default=False, help="See a sample image obs", action="store_true",
)
parser.add_argument(
"--vis-trained",
default=False,
help="Render 10 traj of trained BC",
action="store_true",
)
args = parser.parse_args()
train_env = minigrid_get_env(args.env, args.nenvs, args.flat)
if args.show and not args.flat:
plt.imshow(np.moveaxis(train_env.reset()[0], 0, -1))
plt.show()
save_path = "./logs/" + args.env + "/bc/" + args.run + "/"
os.makedirs(save_path, exist_ok=True)
traj_dataset_path = "./traj_datasets/" + args.traj_name + ".pkl"
print(f"Expert Dataset: {args.traj_name}")
policy_type = ActorCriticPolicy if args.flat else ActorCriticCnnPolicy
with open(traj_dataset_path, "rb") as f:
trajectories = pickle.load(f)
transitions = rollout.flatten_trajectories(trajectories)
logger.configure(args.save_name)
bc_trainer = bc.BC(
train_env.observation_space,
train_env.action_space,
is_image=False,
expert_data=transitions,
loss_type="original",
policy_class=policy_type,
)
bc_trainer.train(n_epochs=args.nepochs)
os.chdir(save_path)
bc_trainer.save_policy(args.save_name + ".pt")
if args.vis_trained:
for traj in range(10):
obs = train_env.reset()
train_env.render()
for i in range(40):
action, _ = bc_trainer.policy.predict(obs, deterministic=True)
obs, reward, done, info = train_env.step(action)
train_env.render()
if done:
break
print(f"Weights Saved at {save_path}")