-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
222 lines (174 loc) · 7.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
'''Train CIFAR10 with PyTorch. Took parts of the code from: https://github.com/kuangliu/pytorch-cifar'''
import os
from turtle import forward
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
#os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
from utils import seed_everything
seed_everything(1)
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Subset
import torchvision
import torchvision.transforms as transforms
import numpy as np
from sklearn.utils import shuffle
import argparse
from utils import progress_bar
from argparse import ArgumentParser
class Model(nn.Module):
def __init__(self, num_classes):
super(Model, self).__init__()
self.num_classes = num_classes
self.mobilenet = torchvision.models.mobilenet_v3_large(pretrained=True)
self.mobilenet.classifier[3] = nn.Linear(self.mobilenet.classifier[3].in_features, num_classes)
def forward(self, x):
res = self.mobilenet(x)
res = nn.functional.softmax(res, dim=1)
return res
# Training
def train(epoch, trainloader, net, criterion, optimizer):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def eval_on_data(dataloader, net, criterion):
net.eval()
test_loss = 0
correct = 0
total = 0
y_true = []
y_pred = []
y_pred_beliefs = []
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(dataloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
y_pred.append(predicted)
y_true.append(targets)
y_pred_beliefs.append(outputs)
progress_bar(batch_idx, len(dataloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
res = torch.cat(y_true, dim=0), torch.cat(y_pred, dim=0), torch.cat(y_pred_beliefs, dim=0)
print(res[0].shape, res[1].shape, res[2].shape)
return res
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def gray2rgb(image):
return image.repeat(3, 1, 1)
rgb_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
gray_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(gray2rgb),
transforms.Resize((224, 224)),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
datasets = {
"cifar10": {
"num_classes": 10,
"cls": torchvision.datasets.CIFAR10,
"transform": rgb_transform,
},
"cifar100": {
"num_classes": 100,
"cls": torchvision.datasets.CIFAR100,
"transform": rgb_transform,
},
"mnist": {
"num_classes": 10,
"cls": torchvision.datasets.MNIST,
"transform": gray_transform,
},
"fashionmnist": {
"num_classes": 10,
"cls": torchvision.datasets.FashionMNIST,
"transform": gray_transform,
},
}
def train_and_save(data_name, num_devices, num_repeats, num_epochs):
seed_everything(1)
dataset = datasets[data_name]
trainset = dataset["cls"](root='./data', train=True, download=True, transform=dataset["transform"])
shuffled_indices = shuffle(np.arange(len(trainset)))
num_traindata = int(len(shuffled_indices)*0.9)
val_inds = shuffled_indices[num_traindata:]
valset = Subset(trainset, val_inds)
valloader = torch.utils.data.DataLoader(valset, batch_size=128, shuffle=False, num_workers=2)
testset = dataset["cls"](root='./data', train=False, download=True, transform=dataset["transform"])
testloader = torch.utils.data.DataLoader(
testset, batch_size=128, shuffle=False, num_workers=2)
for seed_idx in range(num_repeats):
seed_everything(seed_idx)
train_indices = np.array_split(shuffled_indices[:num_traindata], num_devices)
for device_idx, inds in enumerate(train_indices):
seed_everything(seed_idx)
print("Device", device_idx)
trainloader = torch.utils.data.DataLoader(
Subset(trainset, inds), batch_size=128, shuffle=True, num_workers=2)
# Model
#net = MobileNetV2(num_classes=dataset["num_classes"], in_channels = dataset["num_channels"])
net = Model(num_classes = dataset["num_classes"])
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)
for epoch in range(num_epochs):
train(epoch, trainloader, net, criterion, optimizer)
scheduler.step()
y_train_true, y_train_pred, y_train_pred_beliefs = eval_on_data(trainloader, net, criterion)
y_val_true, y_val_pred, y_val_pred_beliefs = eval_on_data(valloader, net, criterion)
y_test_true, y_test_pred, y_test_pred_beliefs = eval_on_data(testloader, net, criterion)
res = {
"model": net.state_dict(),
"inds": inds,
"device_idx": device_idx,
"y_train_true": y_train_true,
"y_train_pred": y_train_pred,
"y_train_pred_beliefs": y_train_pred_beliefs,
"y_val_true": y_val_true,
"y_val_pred": y_val_pred,
"y_val_pred_beliefs": y_val_pred_beliefs,
"y_test_true": y_test_true,
"y_test_pred": y_test_pred,
"y_test_pred_beliefs": y_test_pred_beliefs
}
targetdir = f"results/{data_name}_{num_devices}devices_seed{seed_idx}"
if not os.path.isdir(targetdir):
os.makedirs(targetdir)
torch.save(res, f'{targetdir}/{device_idx}.pth')
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--data", choices=["cifar10", "fashionmnist", "mnist", "cifar100"])
parser.add_argument("--num_repeats", default=5, type=int)
parser.add_argument("--num_devices", default=20, type=int)
parser.add_argument("--num_epochs", default=50, type=int)
cfg = vars(parser.parse_args())
train_and_save(cfg["data"], cfg["num_devices"], cfg["num_repeats"], cfg["num_epochs"])