Please see an extended version of this work titled "Private Collaborative Edge Inference via Over-the-Air Computation", published in IEEE Transactions on Machine Learning in Communications and Networking (TMLCN): [arXiv] [IEEE] [GitHub]
This repository contains the source code for the "Over-the-air ensemble inference with model privacy" paper.
Please cite the paper if this code or paper has been useful to you:
@inproceedings{yilmaz2022over,
title={Over-the-air ensemble inference with model privacy},
author={Yilmaz, Selim F and Has{\i}rc{\i}o{\u{g}}lu, Burak and G{\"u}nd{\"u}z, Deniz},
booktitle={2022 IEEE International Symposium on Information Theory (ISIT)},
pages={1265--1270},
year={2022}
}
- Install conda and torch manually (recommended)
pip install -r requirements.txt
- First train and cache the device models.
- Then you can generate figures, tables or run raw experiments.
python train.py --data <data_name> --num_repeats 10 --num_devices 20 --num_epochs 50
<data_name>
can becifar10
,cifar100
,mnist
,fashionmnist
python nlp_train.py --data <data_name> --num_repeats 10 --num_devices 20
<data_name>
can beyelp_review_full
,yelp_polarity
,imdb
,emotion
- See the bottom of
ota_private_ensemble.py
- Run
python figure_comparison_table.py
### Generate TeX Code for the Varying Conditions pgfplot
- Run
python figure_conditions.py