-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUBI_Demo1.py
91 lines (65 loc) · 3.25 KB
/
UBI_Demo1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# coding = utf-8
import xlrd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from scipy import stats
def set_ch():
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
# datemode = 0,使用1900为基础的时间戳;
# datemode = 1,使用1904为基础的时间戳
def dateMap(excelDate):
return xlrd.xldate.xldate_as_datetime(excelDate, 0)
def ubiFunc(xlsFileName):
sheet_index = 0
comp_cols_indx = 4 # 赔偿金额所在例表
g4_cols_indx = 13 # 四急所在列表,14:汇总;13:急转弯;12:急刹车;11:急减速;10:急加速
OBD_Dind_indx = 15 # OBD绑定日期
# 打开文件
workbook = xlrd.open_workbook(xlsFileName)
# 根据sheet索引或者名称获取sheet内容
sheet1 = workbook.sheet_by_index(sheet_index) # sheet索引从0开始
# sheet1 = workbook.sheet_by_name('sheet1')
# # sheet的名称,行数,列数
# print (sheet1.name,sheet1.nrows,sheet1.ncols)
# # 获取整行和整列的值(数组)
# rows = sheet1.row_values(3) # 获取第四行内容
# cols = sheet1.col_values(2) # 获取第三列内容
# compensation = sheet1.col_values(comp_cols_indx)[1:sheet1.nrows-1] # 获取赔偿金额
g4Count = np.array(sheet1.col_values(g4_cols_indx)[1:sheet1.nrows - 1])
print(g4Count)
# OBDdate = xlrd.xldate_as_tuple(sheet1.cell(OBD_Dind_indx,1).value,0)
# 将绑定OBD的时间导出来,
OBDdate = list(map(dateMap, sheet1.col_values(OBD_Dind_indx)[1:sheet1.nrows - 1]))
OBDdateArray = np.array(OBDdate) # 转换成numpy,便于后续的数组计算
# print(OBDdateArray)
statisticDate = datetime(year=2016, month=8, day=24)
stallDaysArray = statisticDate - OBDdateArray
stallDays = []
for indx in stallDaysArray:
stallDays.append(indx.days + 1) # 这里面要加一天,否则出险nan的现象
g4CountEveryDay = np.abs(g4Count / np.array(stallDays))
print(g4CountEveryDay)
# g4CountEveryDay = np.abs(g4Count // np.array(stallDays)) # 采用整除的方式计算日均
# plt.hist(g4CountEveryDay,50, normed=True) # 转换成概率后的结果
# plt.hist(g4CountEveryDay, 70, normed=True, cumulative=True) # CDF 累计概率分布函数
plt.hist(g4CountEveryDay, 50, normed=True, cumulative=True) # CDF 累计概率分布函数
# plt.hist(g4CountEveryDay, 80)
# plt.axis([0, 80, 0, 100])
plt.grid(True)
plt.ylabel('急转弯 累积分布函数')
plt.xlabel('日均急转弯')
# plt.xticks(range(0, 4, 1))
# plt.yticks(np.linspace(0.0, 0.2, 5))
print('样本值总数:', len(g4CountEveryDay))
print('日均4急均值:', np.mean(g4CountEveryDay))
print('日均4急标准偏差:', np.std(g4CountEveryDay))
print('日均4急中位数:', np.median(g4CountEveryDay)) # 50%的概率分布点
print('日均4急众数:', stats.mode(g4CountEveryDay)) # 出现次数最多的值
plt.show()
if __name__ == '__main__':
# ubiFunc('e:/python/UBI_824.xlsx')
set_ch() #设置中文显示
ubiFunc('e:/python/data/出险情况调查表-保单号(8月24日).xlsx')