-
Notifications
You must be signed in to change notification settings - Fork 21
/
train_eval.py
478 lines (411 loc) · 20.9 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for question-answering on SQuAD (Bert, Roberta)."""
import argparse
import logging
import os
import random
import glob
import time
import pickle
import json
import gc
import math
from shutil import rmtree, copy
from collections import namedtuple
import tensorflow as tf
from tensorflow.keras.losses import sparse_categorical_crossentropy as sce
import numpy as np
from tqdm import tqdm; tqdm.monitor_interval = 0 # noqa
from transformers import BertConfig, BertTokenizer, RobertaConfig, RobertaTokenizer
import optimization
from utils_nq import read_nq_examples, convert_examples_to_crops, \
write_predictions, get_add_tokens, convert_preds_to_df, \
read_candidates
from models import TFBertForNaturalQuestionAnswering, TFRobertaForNaturalQuestionAnswering
from eval_server import main as evaluate_on_nq
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys())
for conf in (BertConfig, )), ())
MODEL_CLASSES = {
'bert': (BertConfig, TFBertForNaturalQuestionAnswering, BertTokenizer),
'roberta': (RobertaConfig, TFRobertaForNaturalQuestionAnswering, RobertaTokenizer),
}
RawResult = namedtuple("RawResult", ["unique_id", "start_logits", "end_logits",
"long_logits"])
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
tf.random.set_seed(args.seed)
def train(args, model_class, tokenizer, config, strategy):
train_dataset, _ = load_and_cache_crops(args, tokenizer, evaluate=False)
num_replicas = strategy.num_replicas_in_sync
args.train_batch_size = args.per_tpu_train_batch_size * num_replicas
num_steps_per_epoch = len(train_dataset['input_ids']) // args.train_batch_size
t_total = num_steps_per_epoch * args.num_train_epochs
warmup_steps = int(args.warmup * t_total)
opt = tf.data.Options()
opt.experimental_deterministic = True
train_ds = tf.data.Dataset.from_tensor_slices(train_dataset).with_options(opt)
train_ds = train_ds.repeat()
train_ds = train_ds.shuffle(buffer_size=100, seed=args.seed)
train_ds = train_ds.batch(batch_size=args.train_batch_size, drop_remainder=True)
train_ds = strategy.experimental_distribute_dataset(train_ds)
train_ds = iter(train_ds)
with strategy.scope():
model = model_class.from_pretrained(args.model_name_or_path, config=config)
if args.init_weights:
logger.info(f"Initializing from {args.init_weights}")
model.load_weights(args.init_weights)
optimizer = optimization.create_optimizer(args.learning_rate,
num_steps_per_epoch * args.num_train_epochs, warmup_steps)
# optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate)
print(model.summary())
@tf.function
def train_step(batch):
with tf.GradientTape() as tape:
outputs = model(batch, training=True)
start_loss = sce(batch['start_positions'], outputs[0], from_logits=True)
end_loss = sce(batch['end_positions'], outputs[1], from_logits=True)
long_loss = sce(batch['long_positions'], outputs[2], from_logits=True)
loss = ((tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss) / 2.0) +
tf.reduce_mean(long_loss)) / 2.0
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return loss
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset["input_ids"]))
logger.info(" Num Epochs = %.1f", args.num_train_epochs)
logger.info(" Instantaneous batch size per TPU = %d", args.per_tpu_train_batch_size)
logger.info(" Total optimization steps = %d", t_total)
global_step = 1
num_samples = 0
smooth = 0.99
set_seed(args)
for epoch in range(1, math.ceil(args.num_train_epochs) + 1):
running_loss = 0.0
epoch_iterator = tqdm(range(num_steps_per_epoch))
for step in epoch_iterator:
if global_step >= t_total:
logger.info(f'Finished training at epoch {epoch}, step {global_step}')
break
batch = next(train_ds)
loss = strategy.experimental_run_v2(train_step, args=(batch, ))
loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, loss, axis=None)
global_step += 1
running_loss = smooth * running_loss + (1. - smooth) * float(loss)
if args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
step_str = '%06d' % global_step
ckpt_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(step_str))
os.makedirs(ckpt_dir, exist_ok=True)
weights_fn = os.path.join(ckpt_dir, 'weights.h5')
model.save_weights(weights_fn)
tokenizer.save_pretrained(ckpt_dir)
# remove too many checkpoints
checkpoint_fns = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-*')))
for fn in checkpoint_fns[:-args.n_keep]:
rmtree(fn)
epoch_iterator.set_postfix({'ep': '%d/%.1f' % (epoch, round(args.num_train_epochs, 1)),
'samples': num_samples, 'trl': round(running_loss, 4)})
num_samples += args.train_batch_size
return global_step, running_loss
def evaluate(args, model, tokenizer, strategy):
val = 'val' in args.predict_fn
prefix = 'val' if val else 'test'
raw_results_fn = os.path.join(args.output_dir, f'{prefix}_raw_results.pkl')
prediction_fn = os.path.join(args.output_dir, f'{prefix}_predictions.json')
nbest_fn = os.path.join(args.output_dir, f'{prefix}_nbest_predictions.json')
csv_fn = os.path.join(args.output_dir, f'{prefix}_submission.csv')
null_log_odds_fn = os.path.join(args.output_dir, f'{prefix}_null_odds.json')
eval_dataset, crops = load_and_cache_crops(args, tokenizer, evaluate=True)
if not os.path.exists(raw_results_fn):
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
num_replicas = strategy.num_replicas_in_sync
args.eval_batch_size = args.per_tpu_eval_batch_size * num_replicas
# pad dataset to multiple of `args.eval_batch_size`
eval_dataset_length = len(eval_dataset['input_ids'])
padded_length = math.ceil(eval_dataset_length / args.eval_batch_size) * args.eval_batch_size
num_pad = padded_length - eval_dataset_length
for ti, t in eval_dataset.items():
pad_tensor = tf.expand_dims(tf.zeros_like(t[0]), 0)
pad_tensor = tf.repeat(pad_tensor, num_pad, 0)
eval_dataset[ti] = tf.concat([t, pad_tensor], 0)
# create eval dataset
eval_dataset['example_index'] = tf.range(padded_length, dtype=tf.int32)
eval_ds = tf.data.Dataset.from_tensor_slices(eval_dataset)
eval_ds = eval_ds.batch(batch_size=args.eval_batch_size, drop_remainder=True)
eval_ds = strategy.experimental_distribute_dataset(eval_ds)
eval_ds = iter(eval_ds)
# eval
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", eval_dataset_length)
logger.info(" Batch size = %d", args.eval_batch_size)
@tf.function
def predict_step(batch):
outputs = model(batch, training=False)
return outputs
all_results = []
tic = time.time()
for batch_ind in tqdm(range(padded_length // args.eval_batch_size)):
# if batch_ind > 40:
# break
batch = next(eval_ds)
example_indexes = tf.concat(batch['example_index'].values, 0)
outputs = strategy.experimental_run_v2(predict_step, args=(batch, ))
outputs = [tf.concat(o.values, 0).numpy() for o in outputs]
for i, example_index in enumerate(example_indexes):
# filter out padded samples
if example_index >= eval_dataset_length:
continue
eval_crop = crops[example_index]
unique_id = int(eval_crop.unique_id)
start_logits = outputs[0][i]
end_logits = outputs[1][i]
long_logits = outputs[2][i]
start_logits = [float(x) for x in start_logits]
end_logits = [float(x) for x in end_logits]
long_logits = [float(x) for x in long_logits]
result = RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits,
long_logits=long_logits)
all_results.append(result)
eval_time = time.time() - tic
logger.info(" Evaluation done in total %f secs (%f sec per example)",
eval_time, eval_time / padded_length)
with open(raw_results_fn, 'wb') as f:
pickle.dump(all_results, f)
print(f'***** Done wrote raw results to {raw_results_fn} *****')
else:
print(f'***** Loading raw results from {raw_results_fn} *****')
with open(raw_results_fn, 'rb') as f:
all_results = pickle.load(f)
examples_gen = read_nq_examples(args.predict_fn, is_training=False)
preds = write_predictions(examples_gen, crops, all_results, args.n_best_size,
args.max_answer_length,
prediction_fn, nbest_fn, null_log_odds_fn,
args.verbose_logging,
args.short_null_score_diff_threshold, args.long_null_score_diff_threshold)
del crops, all_results
gc.collect()
candidates = read_candidates(['simplified-nq-train.jsonl', 'simplified-nq-test.jsonl'])
sub = convert_preds_to_df(preds, candidates).sort_values('example_id')
sub.to_csv(csv_fn, index=False, columns=['example_id', 'PredictionString'])
print(f'***** Wrote submission to {csv_fn} *****')
result = {}
if val:
EvalArgs = namedtuple('EvalArgs', ['csv', 'fn'])
eval_args = EvalArgs(csv=args.gt_csv, fn=csv_fn)
result = evaluate_on_nq(eval_args)
return result
def load_and_cache_crops(args, tokenizer, evaluate=False):
# Load data crops from cache or dataset file
input_file = args.predict_fn if evaluate else args.train_fn
cache_prefix = 'train'
if evaluate:
if 'test' in input_file:
cache_prefix = 'test'
else:
cache_prefix = 'val'
cached_crops_fn = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}.pkl'.format(
cache_prefix, list(filter(None, args.output_dir.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_crops_fn) and not args.overwrite_cache:
logger.info("Loading crops from cached file %s", cached_crops_fn)
with open(cached_crops_fn, "rb") as f:
crops = pickle.load(f)
else:
if args.model_name_or_path.startswith('bert'):
cls_token = '[CLS]'
sep_token = '[SEP]'
pad_id = tokenizer.convert_tokens_to_ids(['[PAD]'])[0]
sep_token_extra = False
elif args.model_name_or_path.startswith('roberta'):
cls_token = '<s>'
sep_token = '</s>'
pad_id = tokenizer.convert_tokens_to_ids(['<pad>'])[0]
sep_token_extra = True
doc_stride = args.eval_doc_stride if evaluate else args.train_doc_stride
logger.info(f"Creating crops of length {args.max_seq_length} with stride {doc_stride}"
f" from dataset file {input_file} using cls_token {cls_token}, sep_token {sep_token}"
f" and pad_id {pad_id}")
examples_gen = read_nq_examples(input_file, is_training=not evaluate)
crops = convert_examples_to_crops(examples_gen=examples_gen,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
cls_token_segment_id=0,
pad_token_segment_id=0,
cls_token=cls_token,
sep_token=sep_token,
pad_id=pad_id,
p_keep_impossible=args.p_keep_impossible if not evaluate else 1.0,
sep_token_extra=sep_token_extra)
logger.info("Saving crops into cached file %s", cached_crops_fn)
with open(cached_crops_fn, "wb") as f:
pickle.dump(crops, f)
# stack
all_input_ids = tf.stack([c.input_ids for c in crops], 0)
all_attention_mask = tf.stack([c.attention_mask for c in crops], 0)
all_token_type_ids = tf.stack([c.token_type_ids for c in crops], 0)
# all_p_mask = tf.stack([c.p_mask for c in crops], 0)
all_attention_mask = tf.cast(all_attention_mask, tf.int32)
if evaluate:
dataset = {
'input_ids': all_input_ids,
'attention_mask': all_attention_mask,
'token_type_ids': all_token_type_ids
}
else:
all_start_positions = tf.convert_to_tensor([f.start_position for f in crops], dtype=tf.int32)
all_end_positions = tf.convert_to_tensor([f.end_position for f in crops], dtype=tf.int32)
all_long_positions = tf.convert_to_tensor([f.long_position for f in crops], dtype=tf.int32)
dataset = {
'input_ids': all_input_ids,
'attention_mask': all_attention_mask,
'token_type_ids': all_token_type_ids,
'start_positions': all_start_positions,
'end_positions': all_end_positions,
'long_positions': all_long_positions,
}
# https://github.com/huggingface/transformers/blob/master/examples/run_squad.py#L206
if args.model_name_or_path.startswith('roberta'):
logger.info(f"Removing token_type_ids for {args.model_name_or_path}")
dataset.pop('token_type_ids')
return dataset, crops
def get_strategy():
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # TPU detection
print('Running on TPU ', tpu.cluster_spec().as_dict()['worker'])
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
except ValueError as e:
print(e)
print('No TPU detected')
tpu = None
strategy = tf.distribute.get_strategy()
return strategy
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--train_fn", default="nq-train-v1.0.1.json", type=str)
parser.add_argument("--predict_fn", default="nq-val-v1.0.1.json", type=str)
parser.add_argument("--gt_csv", default="nq-val-v1.0.1.csv", type=str)
parser.add_argument("--model_name_or_path",
default="bert-large-uncased-whole-word-masking-finetuned-squad", type=str)
parser.add_argument("--init_weights", default="", type=str)
parser.add_argument("--id", default="0", type=str)
# Other parameters
parser.add_argument('--short_null_score_diff_threshold', type=float, default=0.0)
parser.add_argument('--long_null_score_diff_threshold', type=float, default=0.0)
parser.add_argument("--max_seq_length", default=512, type=int)
parser.add_argument("--train_doc_stride", default=256, type=int)
parser.add_argument("--eval_doc_stride", default=256, type=int)
parser.add_argument("--max_query_length", default=64, type=int)
parser.add_argument("--do_not_train", action='store_true')
parser.add_argument("--do_not_eval", action='store_true')
parser.add_argument("--per_tpu_train_batch_size", default=8, type=int)
parser.add_argument("--per_tpu_eval_batch_size", default=8, type=int)
parser.add_argument("--learning_rate", default=3e-5, type=float)
parser.add_argument("--num_train_epochs", default=2.0, type=float)
parser.add_argument("--warmup", default=0.1, type=float)
parser.add_argument("--n_best_size", default=10, type=int)
parser.add_argument("--max_answer_length", default=30, type=int)
parser.add_argument("--verbose_logging", action='store_true')
parser.add_argument('--logging_steps', type=int, default=1_000_000)
parser.add_argument('--save_steps', type=int, default=200,
help="Save checkpoint every X updates steps.")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--n_keep', type=int, default=2, help="Number of checkpoints to keep.")
parser.add_argument('--p_keep_impossible', type=float,
default=0.1, help="The fraction of impossible"
" samples to keep.")
parser.add_argument('--do_enumerate', action='store_true')
args = parser.parse_args()
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
# Set seed
set_seed(args)
if args.model_name_or_path.startswith('bert'):
do_lower_case = 'uncased' in args.model_name_or_path
elif args.model_name_or_path.startswith('roberta'):
# https://github.com/huggingface/transformers/pull/1386/files
do_lower_case = False
args.output_dir = f"nq_{args.model_name_or_path.split('-')[0]}_" \
f"{'uncased' if do_lower_case else 'cased'}_{args.id}"
strategy = get_strategy()
logger.info("Running on %s replicas" % strategy.num_replicas_in_sync)
logger.info("Training / evaluation parameters %s", args)
args.model_type = args.model_name_or_path.split('-')[0].lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.model_name_or_path, cache_dir='transformers_cache')
logger.info(f"Using {'uncased' if do_lower_case else 'cased'} tokenizer")
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path,
do_lower_case=do_lower_case, cache_dir='transformers_cache')
add_tokens = get_add_tokens(do_enumerate=args.do_enumerate)
if args.model_name_or_path.startswith('bert'):
offset = 1
elif args.model_name_or_path.startswith('roberta'):
offset = 50100
# https://github.com/huggingface/transformers/issues/1234
# config.type_vocab_size = 2
num_added = tokenizer.add_tokens(add_tokens, offset=offset)
logger.info(f"Added {num_added} tokens")
# Training
if not args.do_not_train:
# Create output directory if needed
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Save the code
src_fns = glob.glob("*.py")
for src_fn in src_fns:
dst = os.path.join(args.output_dir, src_fn)
copy(src_fn, dst)
# Save the run arguments
with open(os.path.join(args.output_dir, 'args.json'), 'w') as f:
args_ = vars(args).copy()
args_['device'] = ''
json.dump(args_, f, indent=2)
global_step, tr_loss = train(args, model_class, tokenizer, config, strategy)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
if not args.do_not_eval:
# Reload the model
glob_str = os.path.join(args.output_dir, 'checkpoint-*')
checkpoint_fns = sorted(glob.glob(glob_str))
if len(checkpoint_fns) == 0:
raise ValueError(f'No weights for {glob_str}')
checkpoint = checkpoint_fns[-1]
logger.info("Evaluate the following checkpoint: %s", checkpoint)
weights_fn = os.path.join(checkpoint, 'weights.h5')
with strategy.scope():
model = model_class(config)
model(model.dummy_inputs, training=False)
model.load_weights(weights_fn)
# Evaluate
result = evaluate(args, model, tokenizer, strategy)
logger.info("Result: {}".format(result))
if __name__ == "__main__":
main()