-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_discrete_layout.py
executable file
·130 lines (101 loc) · 3.77 KB
/
genetic_discrete_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
__author__ = 'Sebastian Sanchez Perez-Moreno. Email: s.sanchezperezmoreno@tudelft.nl'
import sys
from math import ceil, floor, log
from random import randint, random, choice
from run_workflow_optimise import run_workflow
fitness = run_workflow
import time
from joblib import Parallel, delayed
from copy import deepcopy
result = open('gen_best_layout.dat', 'w', 1)
result2 = open('gen_fitness.dat', 'w', 1)
average = open('gen_average_fitness.dat', 'w', 1)
start_time = time.time()
id = []
x = []
y = []
with open("layout_grid.dat", "r") as grid:
for line in grid:
cols = line.split()
x.append(cols[1])
y.append(cols[2])
id.append(cols[0])
def vector_to_coordinates(v):
return [[x[i], y[i]] for i in v]
def make_vector(state, a):
state[a] = choice(id)
def gen_individual():
state = [0 for _ in range(9)]
for a in range(len(state)):
make_vector(state, a)
return state
def gen_population(n_indiv):
return [gen_individual() for _ in range(n_indiv)]
def grade_gen(b, n):
average = 0.0
for item in b:
average += item / n
return average
def optimise():
n_iter = 40
n_ind = 15
mutation_rate = 0.01
selection_percentage = 0.2
random_selection = 0.05
pops = gen_population(n_ind)
n_ind = len(pops)
for iteration in range(n_iter): # Iteration through generations loop
start_time2 = time.time()
pop = deepcopy(pops)
pops = []
fit = Parallel(n_jobs=-2)(delayed(fitness)(pop[i]) for i in range(n_ind)) # Parallel evaluation of fitness of all individuals
aver = grade_gen(fit, float(n_ind))
average.write('{}\n'.format(aver))
for i in range(n_ind):
fit[i] = [fit[i], i]
for x in range(13):
result.write('{}\t'.format(pop[min(fit)[1]][x])) # This min implies minimisation.
result.write('{}\n'.format(fit[int(min(fit)[1])][0]))
for y in range(n_ind):
result2.write('{}\n'.format(fit[y][0]))
result2.write('\n')
graded = [x[1] for x in sorted(fit, reverse=False)]
retain_length = int(len(graded) * selection_percentage)
parents_index = graded[:retain_length]
# Add randomly other individuals for variety
for item in graded[retain_length:]:
if random_selection > random():
parents_index.append(item)
# Mutation of individuals
for item in parents_index:
if mutation_rate > random():
a = randint(0, 12)
state = pop[item]
make_vector(state, a)
pop[item] = state
for item in parents_index:
pops.append(pop[item])
# Crossover function. Create children from parents
parents_length = len(parents_index)
desired_length = n_ind - parents_length
children = []
while len(children) < desired_length:
parent1 = randint(0, parents_length - 1)
parent2 = randint(0, parents_length - 1)
if parent1 != parent2:
parent1 = pop[parents_index[parent1]]
parent2 = pop[parents_index[parent2]]
cross_place = randint(0, 12)
child = parent1[:cross_place] + parent2[cross_place:]
while child[2] > child[1]:
child[2] = choice([1.0, 2.0, 5.0, 10.0, 15.0, 30.0, 60.0, 90.0, 120.0, 180.0])
children.append(child)
pops.extend(children)
print("%d iteration,--- %s seconds, --- fitness: %f" % (iteration, time.time() - start_time2, fit[int(min(fit)[1])][0]))
print("--- %s seconds ---" % (time.time() - start_time))
result.close()
result2.close()
average.close()
if __name__ == '__main__':
# print(gen_individual())
optimise()