-
Notifications
You must be signed in to change notification settings - Fork 62
/
train.py
executable file
·125 lines (100 loc) · 4.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""Main training file for WarpGAN
"""
# MIT License
#
# Copyright (c) 2019 Yichun Shi
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import sys
import time
import imp
import argparse
import tensorflow as tf
import numpy as np
from utils import utils
from utils.imageprocessing import preprocess
from utils.dataset import Dataset
from warpgan import WarpGAN
def test(network, config, log_dir, step):
# Initialize testing
if not hasattr(test, 'images'):
testset = Dataset(config.test_dataset_path, prefix=config.data_prefix)
random_indices = np.random.permutation(np.where(testset.is_photo)[0])[:64]
test.images = testset.images[random_indices].astype(np.object)
test.images = preprocess(test.images, config, is_training=False)
output_dir = os.path.join(log_dir, 'samples')
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
# scales = np.indices((8,8), dtype=np.float32)[1] * 5
scales = np.ones((8,8))
scales = scales.flatten()
test_results = network.generate_BA(test.images, scales, config.batch_size)
utils.save_manifold(test_results, os.path.join(output_dir, '{}.jpg'.format(step)))
def main(args):
# I/O
config_file = args.config_file
config = imp.load_source('config', config_file)
if args.name:
config.name = args.name
trainset = Dataset(config.train_dataset_path, prefix=config.data_prefix)
network = WarpGAN()
network.initialize(config, trainset.num_classes)
# Initalization for running
if config.save_model:
log_dir = utils.create_log_dir(config, config_file)
summary_writer = tf.summary.FileWriter(log_dir, network.graph)
if config.restore_model:
network.restore_model(config.restore_model, config.restore_scopes)
proc_func = lambda images: preprocess(images, config, True)
trainset.start_batch_queue(config.batch_size, proc_func=proc_func)
# Main Loop
print('\nStart Training\nname: {}\n# epochs: {}\nepoch_size: {}\nbatch_size: {}\n'.format(
config.name, config.num_epochs, config.epoch_size, config.batch_size))
global_step = 0
start_time = time.time()
for epoch in range(config.num_epochs):
if epoch == 0: test(network, config, log_dir, global_step)
# Training
for step in range(config.epoch_size):
# Prepare input
learning_rate = utils.get_updated_learning_rate(global_step, config)
batch = trainset.pop_batch_queue()
wl, sm, global_step = network.train(batch['images'], batch['labels'], batch['is_photo'], learning_rate, config.keep_prob)
wl['lr'] = learning_rate
# Display
if step % config.summary_interval == 0:
duration = time.time() - start_time
start_time = time.time()
utils.display_info(epoch, step, duration, wl)
if config.save_model:
summary_writer.add_summary(sm, global_step=global_step)
# Testing
test(network, config, log_dir, global_step)
# Save the model
if config.save_model:
network.save_model(log_dir, global_step)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config_file", help="The path to the training configuration file",
type=str)
parser.add_argument("--name", help="Rename the log dir",
type=str, default=None)
args = parser.parse_args()
main(args)