-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodel.py
143 lines (124 loc) · 6.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert import BertModel, BertConfig
from utils import kl_coef
class DomainDiscriminator(nn.Module):
def __init__(self, num_classes=6, input_size=768 * 2,
hidden_size=768, num_layers=3, dropout=0.1):
super(DomainDiscriminator, self).__init__()
self.num_layers = num_layers
hidden_layers = []
for i in range(num_layers):
if i == 0:
input_dim = input_size
else:
input_dim = hidden_size
hidden_layers.append(nn.Sequential(
nn.Linear(input_dim, hidden_size),
nn.ReLU(), nn.Dropout(dropout)
))
hidden_layers.append(nn.Linear(hidden_size, num_classes))
self.hidden_layers = nn.ModuleList(hidden_layers)
def forward(self, x):
# forward pass
for i in range(self.num_layers - 1):
x = self.hidden_layers[i](x)
logits = self.hidden_layers[-1](x)
log_prob = F.log_softmax(logits, dim=1)
return log_prob
class DomainQA(nn.Module):
def __init__(self, bert_name_or_config, num_classes=6, hidden_size=768,
num_layers=3, dropout=0.1, dis_lambda=0.5, concat=False, anneal=False):
super(DomainQA, self).__init__()
if isinstance(bert_name_or_config, BertConfig):
self.bert = BertModel(bert_name_or_config)
else:
self.bert = BertModel.from_pretrained("bert-base-uncased")
self.config = self.bert.config
self.qa_outputs = nn.Linear(hidden_size, 2)
# init weight
self.qa_outputs.weight.data.normal_(mean=0.0, std=0.02)
self.qa_outputs.bias.data.zero_()
if concat:
input_size = 2 * hidden_size
else:
input_size = hidden_size
self.discriminator = DomainDiscriminator(num_classes, input_size, hidden_size, num_layers, dropout)
self.num_classes = num_classes
self.dis_lambda = dis_lambda
self.anneal = anneal
self.concat = concat
self.sep_id = 102
# only for prediction
def forward(self, input_ids, token_type_ids, attention_mask,
start_positions=None, end_positions=None, labels=None,
dtype=None, global_step=22000):
if dtype == "qa":
qa_loss = self.forward_qa(input_ids, token_type_ids, attention_mask,
start_positions, end_positions, global_step)
return qa_loss
elif dtype == "dis":
assert labels is not None
dis_loss = self.forward_discriminator(input_ids, token_type_ids, attention_mask, labels)
return dis_loss
else:
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
return start_logits, end_logits
def forward_qa(self, input_ids, token_type_ids, attention_mask, start_positions, end_positions, global_step):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
cls_embedding = sequence_output[:, 0]
if self.concat:
sep_embedding = self.get_sep_embedding(input_ids, sequence_output)
hidden = torch.cat([cls_embedding, sep_embedding], dim=1)
else:
hidden = sequence_output[:, 0] # [b, d] : [CLS] representation
log_prob = self.discriminator(hidden)
targets = torch.ones_like(log_prob) * (1 / self.num_classes)
# As with NLLLoss, the input given is expected to contain log-probabilities
# and is not restricted to a 2D Tensor. The targets are given as probabilities
kl_criterion = nn.KLDivLoss(reduction="batchmean")
if self.anneal:
self.dis_lambda = self.dis_lambda * kl_coef(global_step)
kld = self.dis_lambda * kl_criterion(log_prob, targets)
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
qa_loss = (start_loss + end_loss) / 2
total_loss = qa_loss + kld
return total_loss
def forward_discriminator(self, input_ids, token_type_ids, attention_mask, labels):
with torch.no_grad():
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
cls_embedding = sequence_output[:, 0] # [b, d] : [CLS] representation
if self.concat:
sep_embedding = self.get_sep_embedding(input_ids, sequence_output)
hidden = torch.cat([cls_embedding, sep_embedding], dim=-1) # [b, 2*d]
else:
hidden = cls_embedding
log_prob = self.discriminator(hidden.detach())
criterion = nn.NLLLoss()
loss = criterion(log_prob, labels)
return loss
def get_sep_embedding(self, input_ids, sequence_output):
batch_size = input_ids.size(0)
sep_idx = (input_ids == self.sep_id).sum(1)
sep_embedding = sequence_output[torch.arange(batch_size), sep_idx]
return sep_embedding