-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval.py
71 lines (57 loc) · 2.95 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import collections
import json
import torch
from torch.utils.data import TensorDataset, SequentialSampler, DataLoader
from iterator import read_squad_examples, convert_examples_to_features, write_predictions
from mrqa_official_eval import evaluate, read_answers
def eval_qa(model, file_path, prediction_file, args, tokenizer, batch_size=50):
eval_examples = read_squad_examples(file_path, debug=False)
eval_features = convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
max_query_length=args.max_query_length,
doc_stride=args.doc_stride,
is_training=False
)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids)
sampler = SequentialSampler(eval_data)
eval_loader = DataLoader(eval_data, sampler=sampler, batch_size=batch_size)
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
model.eval()
all_results = []
example_index = -1
for _, batch in enumerate(eval_loader):
input_ids, input_mask, seg_ids = batch
seq_len = torch.sum(torch.sign(input_ids), 1)
max_len = torch.max(seq_len)
input_ids = input_ids[:, :max_len].clone()
input_mask = input_mask[:, :max_len].clone()
seg_ids = seg_ids[:, :max_len].clone()
if args.use_cuda:
input_ids = input_ids.cuda(args.gpu, non_blocking=True)
input_mask = input_mask.cuda(args.gpu, non_blocking=True)
seg_ids = seg_ids.cuda(args.gpu, non_blocking=True)
with torch.no_grad():
batch_start_logits, batch_end_logits = model(input_ids, seg_ids, input_mask)
batch_size = batch_start_logits.size(0)
for i in range(batch_size):
example_index += 1
start_logits = batch_start_logits[i].detach().cpu().tolist()
end_logits = batch_end_logits[i].detach().cpu().tolist()
eval_feature = eval_features[example_index]
unique_id = int(eval_feature.unique_id)
all_results.append(RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))
preds = write_predictions(eval_examples, eval_features, all_results,
n_best_size=20, max_answer_length=30, do_lower_case=args.do_lower_case,
output_prediction_file=prediction_file)
answers = read_answers(file_path)
preds_dict = json.loads(preds)
metrics = evaluate(answers, preds_dict, skip_no_answer=args.skip_no_ans)
return metrics