Skip to content

This repository provides all the models that we use to solve the Context Independent Claim Detection Argumentation Mining sub-task.

Notifications You must be signed in to change notification settings

sdrabb/argumentation_mining_models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Argumentation Mining Models

This repository provides three types of Neural Networks that can be used to solve the Context Independent Claim Detection. We employ our models on the IBM dataset and for each of them we consider the pretrained word embeddings built with Glove model. For the Tree-LSTM model we follow the code of the Stanford Tree-Structured Long Short-Term Memory Networks.

Repository Structure

  • LSTM implementation of the LSTM: the model is defined in the file lstm.py, scores.py is used to evaluate the model. The considered topics are listed in considered_topic.txt.

  • RNN implementation of the RNN: the model is defined in the file rnn.py, scores_and_charts.py is used to evaluate the model.

  • Tree-LSTM contains the changes made to the Tree-Structured Long Short-Term Memory Networks to fit their implementation to our task.

Built With

  • Tensorflow - Long Short Term Memory and Recursive Neural Network
  • Torch - Tree Structured Long Short Term Memory

References

About

This repository provides all the models that we use to solve the Context Independent Claim Detection Argumentation Mining sub-task.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published