-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added Clustering Models and dataset. Updated the README
- Loading branch information
Showing
4 changed files
with
620 additions
and
0 deletions.
There are no files selected for viewing
206 changes: 206 additions & 0 deletions
206
Clustering/Hierarchical Clustering/hierarchical_clustering.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "JKkbeQi2Mzug" | ||
}, | ||
"source": [ | ||
"# Hierarchical Clustering" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "TaQI437hM1Ho" | ||
}, | ||
"source": [ | ||
"## Importing the libraries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "2UW48DgcM4YS" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "gFeTEtDxM7K4" | ||
}, | ||
"source": [ | ||
"## Importing the dataset" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "4fS2J3HGM99q" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset = pd.read_csv('../../datasets/Mall_Customers.csv')\n", | ||
"X = dataset.iloc[:, [3, 4]].values" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "czYMlG7cNBsu" | ||
}, | ||
"source": [ | ||
"## Using the dendrogram to find the optimal number of clusters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 295 | ||
}, | ||
"colab_type": "code", | ||
"executionInfo": { | ||
"elapsed": 4948, | ||
"status": "ok", | ||
"timestamp": 1588363683148, | ||
"user": { | ||
"displayName": "Hadelin de Ponteves", | ||
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhEuXdT7eQweUmRPW8_laJuPggSK6hfvpl5a6WBaA=s64", | ||
"userId": "15047218817161520419" | ||
}, | ||
"user_tz": -240 | ||
}, | ||
"id": "RDQODpAFNILO", | ||
"outputId": "8743058d-09a8-43f5-892d-6b1c140792a0" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import scipy.cluster.hierarchy as sch\n", | ||
"dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))\n", | ||
"plt.title('Dendrogram')\n", | ||
"plt.xlabel('Customers')\n", | ||
"plt.ylabel('Euclidean distances')\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "KDbXbo9INLF6" | ||
}, | ||
"source": [ | ||
"## Training the Hierarchical Clustering model on the dataset" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"colab": {}, | ||
"colab_type": "code", | ||
"id": "IoH3zs2KNSw6" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from sklearn.cluster import AgglomerativeClustering\n", | ||
"hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', linkage = 'ward')\n", | ||
"y_hc = hc.fit_predict(X)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "X-SYG7l9NVmU" | ||
}, | ||
"source": [ | ||
"## Visualising the clusters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 295 | ||
}, | ||
"colab_type": "code", | ||
"executionInfo": { | ||
"elapsed": 1290, | ||
"status": "ok", | ||
"timestamp": 1588363703003, | ||
"user": { | ||
"displayName": "Hadelin de Ponteves", | ||
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhEuXdT7eQweUmRPW8_laJuPggSK6hfvpl5a6WBaA=s64", | ||
"userId": "15047218817161520419" | ||
}, | ||
"user_tz": -240 | ||
}, | ||
"id": "-91tDJrnNY2p", | ||
"outputId": "fc9652fa-6e3f-4b68-c4ff-e6fd6b4bce7d" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster 1')\n", | ||
"plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')\n", | ||
"plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3')\n", | ||
"plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')\n", | ||
"plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')\n", | ||
"plt.title('Clusters of customers')\n", | ||
"plt.xlabel('Annual Income (k$)')\n", | ||
"plt.ylabel('Spending Score (1-100)')\n", | ||
"plt.legend()\n", | ||
"plt.show()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"authorship_tag": "ABX9TyOE/Ghkv22sqrXHjexUJwPA", | ||
"collapsed_sections": [], | ||
"name": "hierarchical_clustering.ipynb", | ||
"provenance": [], | ||
"toc_visible": true | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Oops, something went wrong.