-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathdemo.py
64 lines (47 loc) · 2.37 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
from keras import backend as K
import tensorflow as tf
from networks.dextr import DEXTR
from mypath import Path
from helpers import helpers as helpers
modelName = 'dextr_pascal-sbd'
pad = 50
thres = 0.8
gpu_id = 0
# Handle input and output args
sess = tf.Session()
K.set_session(sess)
with sess.as_default():
net = DEXTR(nb_classes=1, resnet_layers=101, input_shape=(512, 512), weights=modelName,
num_input_channels=4, classifier='psp', sigmoid=True)
# Read image and click the points
image = np.array(Image.open('ims/dog-cat.jpg'))
plt.ion()
plt.axis('off')
plt.imshow(image)
plt.title('Click the four extreme points of the objects\nHit enter when done (do not close the window)')
results = []
while 1:
extreme_points_ori = np.array(plt.ginput(4, timeout=0)).astype(np.int)
# Crop image to the bounding box from the extreme points and resize
bbox = helpers.get_bbox(image, points=extreme_points_ori, pad=pad, zero_pad=True)
crop_image = helpers.crop_from_bbox(image, bbox, zero_pad=True)
resize_image = helpers.fixed_resize(crop_image, (512, 512)).astype(np.float32)
# Generate extreme point heat map normalized to image values
extreme_points = extreme_points_ori - [np.min(extreme_points_ori[:, 0]), np.min(extreme_points_ori[:, 1])] + [pad,
pad]
extreme_points = (512 * extreme_points * [1 / crop_image.shape[1], 1 / crop_image.shape[0]]).astype(np.int)
extreme_heatmap = helpers.make_gt(resize_image, extreme_points, sigma=10)
extreme_heatmap = helpers.cstm_normalize(extreme_heatmap, 255)
# Concatenate inputs and convert to tensor
input_dextr = np.concatenate((resize_image, extreme_heatmap[:, :, np.newaxis]), axis=2)
# Run a forward pass
pred = net.model.predict(input_dextr[np.newaxis, ...])[0, :, :, 0]
result = helpers.crop2fullmask(pred, bbox, im_size=image.shape[:2], zero_pad=True, relax=pad) > thres
results.append(result)
# Plot the results
plt.imshow(helpers.overlay_masks(image / 255, results))
plt.plot(extreme_points_ori[:, 0], extreme_points_ori[:, 1], 'gx')