-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtr_ft_node.py
628 lines (490 loc) · 27.6 KB
/
tr_ft_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import os
from tqdm import trange
from argparse import ArgumentParser
import logging
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
from imitation_cl.train.utils import check_cuda, set_seed, get_sequence
from imitation_cl.model.hypernetwork import TargetNetwork, str_to_ints, str_to_act
from imitation_cl.model.node import NODETaskEmbedding
from imitation_cl.data.lasa import LASA, LASAExtended
from imitation_cl.data.helloworld import HelloWorld
from imitation_cl.data.robottasks import RobotTasksPosition, RobotTasksOrientation
from imitation_cl.data.utils import get_minibatch, get_minibatch_extended
from imitation_cl.plot.trajectories import plot_ode_simple
from imitation_cl.metrics.traj_metrics import mean_swept_error, mean_frechet_error_fast as mean_frechet_error, dtw_distance_fast as dtw_distance
from imitation_cl.metrics.ori_metrics import quat_traj_distance
from imitation_cl.logging.utils import custom_logging_setup, write_dict, read_dict, Dictobject
#TODO Remove later
# Warning is a PyTorch bug
import warnings
warnings.filterwarnings("ignore", message="Setting attributes on ParameterList is not supported.")
def parse_args(return_parser=False):
parser = ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True, help='Location of dataset')
parser.add_argument('--num_iter', type=int, required=True, help='Number of training iterations')
parser.add_argument('--tsub', type=int, default=20, help='Length of trajectory subsequences for training')
parser.add_argument('--replicate_num', type=int, default=0, help='Number of times the final point of the trajectories should be replicated for training')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--tnet_dim', type=int, default=2, help='Dimension of target network input and output')
parser.add_argument('--tnet_arch', type=str, default='200,200,200', help='Hidden layer units of the target network')
parser.add_argument('--tnet_act', type=str, default='elu', help='Target network activation function')
parser.add_argument('--task_emb_dim', type=int, default=5, help='Dimension of the task embedding vector')
parser.add_argument('--explicit_time', type=int, default=0, help='1: Use time as an explicit network input, 1: Do not use time')
parser.add_argument('--int_method', type=str, default='dopri5', help='Integration method')
parser.add_argument('--data_class', type=str, required=True, help='Dataset class for training')
parser.add_argument('--eval_during_train', type=int, default=0, help='0: net for a task is evaluated immediately after training, 1: eval for all nets is done after training of all tasks')
parser.add_argument('--seed', type=int, required=True, help='Seed for reproducability')
parser.add_argument('--seq_file', type=str, required=True, help='Name of file containing sequence of demonstration files')
parser.add_argument('--log_dir', type=str, default='logs/', help='Main directory for saving logs')
parser.add_argument('--description', type=str, required=True, help='String identifier for experiment')
# Old (data in mat files) or new (data in numpy archives) data loading process
parser.add_argument('--data_type', type=str, default='mat', help='Type of data to load from - mat: mat files, np: numpy archives')
# Scaling term for tangent vectors for learning orientation
parser.add_argument('--tangent_vec_scale', type=float, default=1.0, help='Tangent vector scaling term')
# Plot traj or not
parser.add_argument('--plot_traj', type=int, default=1, help='1: Plot the traj plots, 0: Dont plot traj_plots')
# Plot vectorfield or not
parser.add_argument('--plot_vectorfield', type=int, default=1, help='1: Plot vector field in the traj plots, 0: Dont plot vector field')
# Args for plot formatting
parser.add_argument('--plot_fs', type=int, default=10, help='Fontsize to be used in the plots')
parser.add_argument('--figw', type=float, default=16.0, help='Plot width')
parser.add_argument('--figh', type=float, default=3.3, help='Plot height')
#parser.add_argument('--task_names_path', type=str, required=True, help='Path of the JSON file with task names used in plot')
if return_parser:
# This is used by the slurm creator script
# When running this script directly, this has no effect
return parser
else:
args = parser.parse_args()
return args
def train_task(args, task_id, tnet, node, device):
filenames = get_sequence(args.seq_file)
data = None
if args.data_class == 'LASA':
if args.data_type == 'mat':
data = LASA(data_dir=args.data_dir, filename=filenames[task_id], replicate_num=args.replicate_num)
elif args.data_type == 'np':
datafile = os.path.join(args.data_dir, filenames[task_id])
data = LASAExtended(datafile, seq_len=args.tsub, norm=True, device=device)
else:
raise NotImplementedError(f'data_type {args.data_type} not available for data_class {args.data_class}')
elif args.data_class == 'HelloWorld':
data = HelloWorld(data_dir=args.data_dir, filename=filenames[task_id])
elif args.data_class == 'RobotTasksPosition':
if args.data_type == 'np':
data = RobotTasksPosition(data_dir=args.data_dir, datafile=filenames[task_id], device=device)
else:
raise NotImplementedError(f'data_type {args.data_type} not available for data_class {args.data_class}')
elif args.data_class == 'RobotTasksOrientation':
if args.data_type == 'np':
data = RobotTasksOrientation(data_dir=args.data_dir, datafile=filenames[task_id], device=device, scale=args.tangent_vec_scale)
else:
raise NotImplementedError(f'data_type {args.data_type} not available for data_class {args.data_class}')
else:
raise NotImplementedError(f'Unknown dataset class {args.data_class}')
node.set_target_network(tnet)
node.set_task_id(task_id)
tnet.train()
node.train()
# Create a new task embedding for this task
node.gen_new_task_emb()
node = node.to(device)
# For optimizing the weights and biases of the NODE
theta_optimizer = optim.Adam(node.target_network.weights, lr=args.lr)
# For optimizing the task embedding for the current task.
# We only optimize the task embedding corresponding to the current task,
# the remaining ones stay constant.
emb_optimizer = optim.Adam([node.get_task_emb(task_id)], lr=args.lr)
# Start training iterations
for training_iters in trange(args.num_iter):
### Train theta and task embedding.
theta_optimizer.zero_grad()
emb_optimizer.zero_grad()
# Set the target network in the NODE
node.set_target_network(tnet)
if args.data_type == 'mat':
t, y_all = get_minibatch(data.t[0], data.pos, tsub=args.tsub)
elif args.data_type == 'np':
t, y_all = get_minibatch_extended(data.t[0], data.pos, nsub=None, tsub=args.tsub, dtype=torch.float)
# The time steps
t = t.to(device)
# Subsequence trajectories
y_all = y_all.to(device)
# Starting points
y_start = y_all[:,0].float()
# Predicted trajectories - forward simulation
y_hat = node(t.float(), y_start)
# MSE
loss = ((y_hat-y_all)**2).mean()
# Calling loss_task.backward computes the gradients w.r.t. the loss for the
# current task.
loss.backward()
# The task embedding is only trained on the task-specific loss.
emb_optimizer.step()
# Update the NODE params
theta_optimizer.step()
return tnet, node
def eval_task(args, task_id, tnet, node, device):
tnet.eval()
tnet = tnet.to(device)
node = node.to(device)
filenames = get_sequence(args.seq_file)
data = None
if args.data_class == 'LASA':
if args.data_type == 'mat':
data = LASA(data_dir=args.data_dir, filename=filenames[task_id], replicate_num=args.replicate_num)
elif args.data_type == 'np':
datafile = os.path.join(args.data_dir, filenames[task_id])
data = LASAExtended(datafile, seq_len=args.tsub, norm=True, device=device)
else:
raise NotImplementedError(f'data_type {args.data_type} not available for data_class {args.data_class}')
elif args.data_class == 'HelloWorld':
data = HelloWorld(data_dir=args.data_dir, filename=filenames[task_id])
elif args.data_class == 'RobotTasksPosition':
if args.data_type == 'np':
data = RobotTasksPosition(data_dir=args.data_dir, datafile=filenames[task_id], device=device)
else:
raise NotImplementedError(f'data_type {args.data_type} not available for data_class {args.data_class}')
elif args.data_class == 'RobotTasksOrientation':
if args.data_type == 'np':
data = RobotTasksOrientation(data_dir=args.data_dir, datafile=filenames[task_id], device=device, scale=args.tangent_vec_scale)
else:
raise NotImplementedError(f'data_type {args.data_type} not available for data_class {args.data_class}')
else:
raise NotImplementedError(f'Unknown dataset class {args.data_class}')
# Set the target network in the NODE
node.set_target_network(tnet)
node = node.float()
node.eval()
# Choose the task_id for the NODE
node.set_task_id(task_id)
if args.data_type == 'mat':
# The time steps
t = torch.from_numpy(data.t[0]).float().to(device)
# The starting position
# (n,d-dimensional, where n is the num of demos and
# d is the dimension of each point)
y_start = torch.from_numpy(data.pos[:,0]).float().to(device)
# The entire demonstration trajectory
y_all = torch.from_numpy(data.pos).float().to(device)
elif args.data_type == 'np':
# The time steps
t = data.t[0].float()
# The starting position
# (n,d-dimensional, where n is the num of demos and
# d is the dimension of each point)
#y_start = torch.unsqueeze(dataset.pos[0,0], dim=0)
# Use the translated trajectory (goal at origin)
y_start = data.pos[:,0]
y_start = y_start.float()
# The entire demonstration trajectory
y_all = data.pos.float()
# Predicted trajectory
y_hat = node(t, y_start) # forward simulation
# Compute trajectory metrics
y_all_np = y_all.cpu().detach().numpy()
y_hat_np = y_hat.cpu().detach().numpy()
# De-normalize the data before computing trajectories
y_all_np = data.unnormalize(y_all_np)
y_hat_np = data.unnormalize(y_hat_np)
if args.data_class == 'RobotTasksOrientation':
# Convert predicted trajectory from tangent vectors to quaternions
q_hat_np = data.from_tangent_plane(y_hat_np)
# Compare the predicted quaternion trajectorywith the ground truth
metric_quat_err, metric_quat_errs = quat_traj_distance(data.quat_data, q_hat_np)
eval_traj_metrics = {'quat_error': metric_quat_err}
eval_traj_metric_errors = {'quat_error': metric_quat_errs.tolist()}
else:
metric_swept_err, metric_swept_errs = mean_swept_error(y_all_np, y_hat_np)
metric_frechet_err, metric_frechet_errs = mean_frechet_error(y_all_np, y_hat_np)
metric_dtw_err, metric_dtw_errs = dtw_distance(y_all_np, y_hat_np)
eval_traj_metrics = {'swept': metric_swept_err,
'frechet': metric_frechet_err,
'dtw': metric_dtw_err}
# Store the metric errors
# Convert np arrays to list so that these can be written to JSON
eval_traj_metric_errors = {'swept': metric_swept_errs.tolist(),
'frechet': metric_frechet_errs.tolist(),
'dtw': metric_dtw_errs.tolist()}
# Data that is used for creating a plot of demonstration
# trajectories and predicted trajectories
plot_data = [t, y_all, node.ode_rhs, y_hat.detach()]
return eval_traj_metrics, eval_traj_metric_errors, plot_data
def train_all(args):
# Create logging folder and set up console logging
save_dir, identifier = custom_logging_setup(args)
# Check if cuda is available
cuda_available, device = check_cuda()
logging.info(f'cuda_available: {cuda_available}')
# Create a target network with parameters
tnet = TargetNetwork(n_in=args.tnet_dim+args.task_emb_dim+args.explicit_time,
n_out=args.tnet_dim,
hidden_layers=str_to_ints(args.tnet_arch),
activation_fn=str_to_act(args.tnet_act),
use_bias=True,
no_weights=False,
init_weights=None,
dropout_rate=-1,
use_batch_norm=False,
bn_track_stats=False,
distill_bn_stats=False,
out_fn=None,
device=device).to(device)
# The NODE uses the target network as the RHS of its
# differential equation
# In addition this NODE has a trainable task embedding vector,
# one for each task
node = NODETaskEmbedding(tnet, args.task_emb_dim, args.explicit_time, method=args.int_method).to(device)
# Extract the list of demonstrations from the text file
# containing the sequence of demonstrations
seq = get_sequence(args.seq_file)
num_tasks = len(seq)
eval_resuts=None
for task_id in range(num_tasks):
logging.info(f'#### Training started for task_id: {task_id} (task {task_id+1} out of {num_tasks}) ###')
# Train on the current task_id
tnet, node = train_task(args, task_id, tnet, node, device)
# At the end of every task store the latest networks
logging.info('Saving models')
torch.save(tnet, os.path.join(save_dir, 'models', f'tnet_{task_id}.pth'))
torch.save(node, os.path.join(save_dir, 'models', f'node_{task_id}.pth'))
if args.eval_during_train == 0:
# Evaluate the latest network immediately after training
# is complete for a task
eval_resuts = eval_during_train(args, save_dir, task_id, eval_resuts)
elif args.eval_during_train == 1:
# Evaluation is done after training is finished for all tasks
pass
elif args.eval_during_train == 2:
# No evaluation is performed, this is a trail run
pass
else:
raise NotImplementedError(f'Unknown arg eval_during_train: {args.eval_during_train}')
logging.info('Done')
return save_dir
def eval_during_train(args, save_dir, train_task_id, eval_results=None):
"""
Evaluates one saved model after training for
that task is complete.
This avoids the need to save the networks for each task
for the purpose of evaluation.
"""
# Check if cuda is available
cuda_available, device = check_cuda()
logging.info(f'cuda_available: {cuda_available}')
# Dict for storing evaluation results
# This will be written to a json file in the log folder
# Create this if this is the first time eval is run
if eval_results is None:
eval_results = dict()
# For storing command line arguments for this run
eval_results['args'] = read_dict(os.path.join(save_dir, 'commandline_args.json'))
# For storing the evaluation results
eval_results['data'] = {'metrics': dict(), 'metric_errors': dict()}
# Create a target network with parameters
tnet = TargetNetwork(n_in=args.tnet_dim+args.task_emb_dim+args.explicit_time,
n_out=args.tnet_dim,
hidden_layers=str_to_ints(args.tnet_arch),
activation_fn=str_to_act(args.tnet_act),
use_bias=True,
no_weights=False,
init_weights=None,
dropout_rate=-1,
use_batch_norm=False,
bn_track_stats=False,
distill_bn_stats=False,
out_fn=None,
device=device).to(device)
# The NODE uses the target network as the RHS of its
# differential equation
node = NODETaskEmbedding(tnet, args.task_emb_dim, args.explicit_time, method=args.int_method).to(device)
# Extract the list of demonstrations from the text file
# containing the sequence of demonstrations
seq = get_sequence(args.seq_file)
num_tasks = len(seq)
# After the last task has been trained, we create a plot
# showing the performance on all the tasks
if train_task_id == (num_tasks - 1) and args.plot_traj==1:
figw, figh = args.figw, args.figh
plt.subplots_adjust(left=1/figw, right=1-1/figw, bottom=1/figh, top=1-1/figh)
fig, axes = plt.subplots(figsize=(figw, figh),
sharey=True,
sharex=True,
ncols=num_tasks if num_tasks<=10 else (num_tasks//2),
nrows=1 if num_tasks<=10 else 2,
subplot_kw={'aspect': 1 if args.plot_vectorfield==1 else 'auto',
'projection': 'rectilinear' if args.plot_vectorfield==1 else '3d'})
# Row column for plot with trajectories
r, c = 0, 0
logging.info(f'#### Evaluation started for task_id: {train_task_id} (task {train_task_id+1} out of {num_tasks}) ###')
eval_results['data']['metrics'][f'train_task_{train_task_id}'] = dict()
eval_results['data']['metric_errors'][f'train_task_{train_task_id}'] = dict()
# Load the networks for the current task_id
tnet = torch.load(os.path.join(save_dir, 'models', f'tnet_{train_task_id}.pth'))
node = torch.load(os.path.join(save_dir, 'models', f'node_{train_task_id}.pth'))
# Evaluate on all the past and current task_ids
for eval_task_id in range(train_task_id+1):
logging.info(f'Loaded network trained on task {train_task_id}, evaluating on task {eval_task_id}')
# Figure is plotted only for the last task
# FIXME Dirty hack to handle an unimportant problem
# During evaluation, sometimes the predictions for the finetuned model are so bad
# that the ODE solver (odeint function) gives the following error:
# AssertionError: underflow in dt nan
# The FT model is just a lower baseline and so if this exception occurs
# We simply set the evaluated metrics to the value of the latest metrics
# and carry on
try:
eval_traj_metrics, eval_traj_metric_errors, plot_data = eval_task(args, eval_task_id, tnet, node, device)
except AssertionError as e:
logging.info(f'Caught exception {e}')
# Plot the trajectories for the last trained model
if train_task_id == (num_tasks-1) and args.plot_traj==1:
# Read the task names to use in the plot
# task_names_map = read_dict(args.task_names_path)
r = 1 if num_tasks<=10 else eval_task_id//(num_tasks//2)
c = eval_task_id if num_tasks<=10 else eval_task_id%(num_tasks//2)
t, y_all, ode_rhs, y_hat = plot_data
ax = axes[c] if num_tasks<=10 else axes[r][c]
handles, labels = plot_ode_simple(t, y_all, ode_rhs, y_hat, ax=ax, explicit_time=args.explicit_time, plot_vectorfield=args.plot_vectorfield)
# name = list(task_names_map.values())[eval_task_id]
ax.set_title(eval_task_id, fontsize=args.plot_fs)
# Remove axis labels and ticks
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.xaxis.get_label().set_visible(False)
ax.yaxis.get_label().set_visible(False)
fig.legend(handles, labels, loc='lower center', fontsize=args.plot_fs, ncol=len(handles))
logging.info(f'Evaluated trajectory metrics: {eval_traj_metrics}')
# Store the evaluated metrics
eval_results['data']['metrics'][f'train_task_{train_task_id}'][f'eval_task_{eval_task_id}'] = eval_traj_metrics
eval_results['data']['metric_errors'][f'train_task_{train_task_id}'][f'eval_task_{eval_task_id}'] = eval_traj_metric_errors
if train_task_id == (num_tasks-1) and args.plot_traj==1:
fig.subplots_adjust(hspace=-0.2, wspace=0.1)
# Save the evaluation plot
if args.plot_vectorfield == 1:
plt.savefig(os.path.join(save_dir, f'plot_trajectories_{args.description}.pdf'), bbox_inches='tight')
else:
plt.savefig(os.path.join(save_dir, f'plot_trajectories_{args.description}.pdf'))
# (Over)write the evaluation results to a file in the log dir
write_dict(os.path.join(save_dir, 'eval_results.json'), eval_results)
# Remove the networks that have been evaluated (except for the network of the last task)
if train_task_id < (num_tasks-1):
os.remove(os.path.join(save_dir, 'models', f'tnet_{train_task_id}.pth'))
os.remove(os.path.join(save_dir, 'models', f'node_{train_task_id}.pth'))
logging.info('Current task evaluation done')
return eval_results
def eval_all(args, save_dir):
"""
Evaluates all saved models after training for
all tasks is complete
"""
# Check if cuda is available
cuda_available, device = check_cuda()
logging.info(f'cuda_available: {cuda_available}')
# Dict for storing evaluation results
# This will be written to a json file in the log folder
eval_results = dict()
# For storing command line arguments for this run
eval_results['args'] = read_dict(os.path.join(save_dir, 'commandline_args.json'))
# For storing the evaluation results
eval_results['data'] = {'metrics': dict(), 'metric_errors': dict()}
# Create a target network with parameters
tnet = TargetNetwork(n_in=args.tnet_dim+args.task_emb_dim+args.explicit_time,
n_out=args.tnet_dim,
hidden_layers=str_to_ints(args.tnet_arch),
activation_fn=str_to_act(args.tnet_act),
use_bias=True,
no_weights=False,
init_weights=None,
dropout_rate=-1,
use_batch_norm=False,
bn_track_stats=False,
distill_bn_stats=False,
out_fn=None,
device=device).to(device)
# The NODE uses the target network as the RHS of its
# differential equation
node = NODETaskEmbedding(tnet, args.task_emb_dim, explicit_time=args.explicit_time, method=args.int_method).to(device)
# Extract the list of demonstrations from the text file
# containing the sequence of demonstrations
seq = get_sequence(args.seq_file)
num_tasks = len(seq)
# After the last task has been trained, we create a plot
# showing the performance on all the tasks
figw, figh = args.figw, args.figh
plt.subplots_adjust(left=1/figw, right=1-1/figw, bottom=1/figh, top=1-1/figh)
fig, axes = plt.subplots(figsize=(figw, figh),
sharey=True,
sharex=True,
ncols=num_tasks if num_tasks<=10 else (num_tasks//2),
nrows=1 if num_tasks<=10 else 2,
subplot_kw={'aspect': 1 if args.plot_vectorfield==1 else 'auto',
'projection': 'rectilinear' if args.plot_vectorfield==1 else '3d'})
for task_id in range(num_tasks):
logging.info(f'#### Evaluation started for task_id: {task_id} (task {task_id+1} out of {num_tasks}) ###')
eval_results['data']['metrics'][f'train_task_{task_id}'] = dict()
eval_results['data']['metric_errors'][f'train_task_{task_id}'] = dict()
# Load the networks for the current task_id
tnet = torch.load(os.path.join(save_dir, 'models', f'tnet_{task_id}.pth'))
node = torch.load(os.path.join(save_dir, 'models', f'node_{task_id}.pth'))
r, c = 0, 0
# Evaluate on all the past and current task_ids
for eval_task_id in range(task_id+1):
logging.info(f'Loaded network trained on task {task_id}, evaluating on task {eval_task_id}')
# Figure is plotted only for the last task
# FIXME Dirty hack to handle an unimportant problem
# During evaluation, sometimes the predictions for the finetuned model are so bad
# that the ODE solver (odeint function) gives the following error:
# AssertionError: underflow in dt nan
# The FT model is just a lower baseline and so if this exception occurs
# We simply set the evaluated metrics to the value of the latest metrics
# and carry on
try:
eval_traj_metrics, eval_traj_metric_errors, plot_data = eval_task(args, eval_task_id, tnet, node, device)
except AssertionError as e:
logging.info(f'Caught exception {e}')
# Plot the trajectories for the last trained model
if task_id == (num_tasks-1) and args.plot_traj==1:
# Read the task names to use in the plot
# task_names_map = read_dict(args.task_names_path)
r = 1 if num_tasks<=10 else eval_task_id//(num_tasks//2)
c = eval_task_id if num_tasks<=10 else eval_task_id%(num_tasks//2)
t, y_all, ode_rhs, y_hat = plot_data
ax = axes[c] if num_tasks<=10 else axes[r][c]
handles, labels = plot_ode_simple(t, y_all, ode_rhs, y_hat, ax=ax, explicit_time=args.explicit_time, plot_vectorfield=args.plot_vectorfield)
#name = list(task_names_map.values())[eval_task_id]
ax.set_title(eval_task_id, fontsize=args.plot_fs)
# Remove axis labels and ticks
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.xaxis.get_label().set_visible(False)
ax.yaxis.get_label().set_visible(False)
fig.legend(handles, labels, loc='lower center', fontsize=args.plot_fs, ncol=len(handles))
logging.info(f'Evaluated trajectory metrics: {eval_traj_metrics}')
# Store the evaluated metrics
eval_results['data']['metrics'][f'train_task_{task_id}'][f'eval_task_{eval_task_id}'] = eval_traj_metrics
eval_results['data']['metric_errors'][f'train_task_{task_id}'][f'eval_task_{eval_task_id}'] = eval_traj_metric_errors
if args.plot_traj==1:
fig.subplots_adjust(hspace=-0.2, wspace=0.1)
# Save the evaluation plot
if args.plot_vectorfield == 1:
plt.savefig(os.path.join(save_dir, f'plot_trajectories_{args.description}.pdf'), bbox_inches='tight')
else:
plt.savefig(os.path.join(save_dir, f'plot_trajectories_{args.description}.pdf'))
# Write the evaluation results to a file in the log dir
write_dict(os.path.join(save_dir, 'eval_results.json'), eval_results)
logging.info('All evaluation done')
if __name__ == '__main__':
# Parse commandline arguments
args = parse_args()
# Set the seed for reproducability
set_seed(args.seed)
# Training
save_dir = train_all(args)
# Evaluation can be run in a standalone manner if needed
if args.eval_during_train == 1:
args = Dictobject(read_dict(os.path.join(save_dir, 'commandline_args.json')))
eval_all(args, save_dir)
logging.info('Completed')