-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDQN_Implementation.py
251 lines (206 loc) · 7.65 KB
/
DQN_Implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
import numpy as np, gym, sys, copy, argparse
from keras.layers import *
from keras.optimizers import Adam
from keras.models import Sequential,Model
import random
import tensorflow as tf
from collections import deque
from pathlib import Path
import keras
from keras import backend as K_back
from gym.wrappers import Monitor
import pickle
import os
from networks import QNetwork
EPISODES=5000 #NUMBER OF EPISODES
def plot_eval(testX, testY):
plt.title("Evaluation")
plt.xlabel("Training Episode")
plt.ylabel("Average Test Reward for 20 episodes")
plt.plot(testX, testY)
plt.show()
class Replay_Memory():
def __init__(self, memory_size=50000, burn_in=30000):
self.burn_in=burn_in
self.memory=memory_size
self.mem_queue=deque(maxlen=self.memory)
def sample_batch(self, batch_size=32):
return random.sample(self.mem_queue,batch_size)
def append(self, transition):
if(len(self.mem_queue)<self.memory):
self.mem_queue.append(transition)
else:
self.mem_queue.popleft()
self.mem_queue.append(transition)
class DQN_Agent():
def __init__(self, env, render=False,model_type=None,save_folder=None):
self.net=QNetwork(env,model_type=model_type)
self.obs_space=env.observation_space.shape[0]
self.ac_space=env.action_space.n
self.render=render
######################Hyperparameters###########################
self.env=env
self.epsilon=0.7
self.epsilon_min=0.05
self.epsilon_decay=0.999
self.gamma=0.99
self.max_itr=1000000
self.batch_size=32
self.max_reward=160 #Used for saving a model with a reward above a certain threshold
self.memory_queue=Replay_Memory(memory_size=50000, burn_in=30000)
###############################################################
self.avg_rew_buffer=10
self.avg_rew_queue=deque(maxlen=self.avg_rew_buffer)
self.model_save=50
self.test_model_interval=50
self.save_folder=save_folder
def epsilon_greedy_policy(self, q_values,epsi):
# Creating epsilon greedy probabilities to sample from.
if random.uniform(0,1)<=epsi:
return random.randint(0,self.ac_space-1) #Q-Values shape is batch_size x ac
else:
return np.argmax(q_values[0])
def greedy_policy(self, q_values):
# Creating greedy policy for test time.
return np.argmax(q_values[0])
def train(self):
testX,testY=[],[]
batch_size,max_,avg_rew_test,itr=self.batch_size,0,0,0
print("Using Experience Replay")
#Burn In
self.burn_in_memory()
if(self.save_folder!=None):
self.env=Monitor(self.env, self.save_folder,video_callable=lambda episode_id:episode_id%500==0,force=True)
for epi in range(EPISODES):
state=np.reshape(self.env.reset(),[1,self.obs_space])#Reset the state
total_rew=0
while True:
itr+=1
if(self.render):
self.env.render()
#get action by e-greedy
ac=self.epsilon_greedy_policy(self.net.model.predict(state),self.epsilon)
#Find out next state and rew for current action
n_s,rew,is_t, _ = self.env.step(ac)
#Append to queue
n_s=np.reshape(n_s,[1,self.obs_space])
self.memory_queue.append([state,ac,rew,is_t,n_s])
#Get samples of size batch_size
batch=self.memory_queue.sample_batch(batch_size=batch_size)
#Create array of states and next states
batch_states=np.zeros((len(batch),self.obs_space))
batch_next_states=np.zeros((len(batch),self.obs_space))
actions,rewards,terminals=[],[],[]
for i in range(0,len(batch)):
b_state, b_ac, b_rew, b_is_t, b_ns=batch[i] #Returns already reshaped b_state and b_ns
batch_states[i]=b_state
batch_next_states[i]=b_ns
actions.append(b_ac)
rewards.append(b_rew)
terminals.append(b_is_t)
#Get Predictions
batch_q_values=self.net.model.predict(batch_states)
batch_next_q_values=self.net.model.predict(batch_next_states)
for i in range(0,len(batch)):
if terminals[i]: #Corresponds to is_terminal in sampled batch
batch_q_values[i][actions[i]]=rewards[i]
else:
#If not
batch_q_values[i][actions[i]]=rewards[i]+self.gamma*(np.amax(batch_next_q_values[i]))
#Perform one step of SGD
self.net.model.fit(batch_states,batch_q_values,batch_size=batch_size,epochs=1,verbose=0)
self.epsilon*=self.epsilon_decay
self.epsilon=max(self.epsilon,self.epsilon_min)
total_rew+=rew
state=n_s
if is_t:
break
#test model at intervals
if((epi+1)%self.test_model_interval==0):
testX.append(epi)
avg_rew_test=self.test()
testY.append(avg_rew_test)
#Remove and add rewards to calculate avg reward
if(len(self.avg_rew_queue)>self.avg_rew_buffer):
self.avg.rew_queue.popleft()
self.avg_rew_queue.append(total_rew)
avg_rew=sum(self.avg_rew_queue)/len(self.avg_rew_queue)
######################SAVING SECTION###############################
#Save at intervals
#if((epi+1)%self.model_save==0):
# self.net.model.save('CartPole_linearwExpReplay_{}.h5'.format(epi))
if max_<avg_rew_test and avg_rew_test>self.max_reward:
#self.net.model.save('CartPole_linear_comp_8.h5')
max_=avg_rew_test
######################################################################
print(epi,itr,avg_rew,total_rew)
plot_eval(testX,testY) #Plotting after episodes are done
def test(self, model_file=None):
test_episodes=20
rewards=[]
if(model_file!=None):
self.net.load_model(model_file)
for e in range(test_episodes):
state = np.reshape(self.env.reset(),[1,self.obs_space])
time_steps = 0
total_reward_per_episode = 0
while True:
if(self.render):
self.env.render()
action = self.epsilon_greedy_policy(self.net.model.predict(state),0.05)
next_state, reward, is_t, _ = self.env.step(action)
next_state=np.reshape(next_state,[1,self.obs_space])
state = next_state
total_reward_per_episode+=reward
time_steps+=1
if is_t:
break
rewards.append(total_reward_per_episode)
print("Total Reward for Episode {} is {}".format(e,total_reward_per_episode))
avg_rewards_=np.mean(np.array(rewards))
std_dev=np.std(rewards)
print("AvgRew={},Std={}".format(avg_rewards_,std_dev))
return avg_rewards_
def burn_in_memory(self):
# Initialize replay memory with a burn_in number of episodes / transitions.
memory_size=0
state=np.reshape(self.env.reset(),[1,self.obs_space])
while(memory_size<self.memory_queue.burn_in):
ac=random.randint(0,self.ac_space-1)
n_s,rew,is_t,_=self.env.step(ac)
n_s=np.reshape(n_s,[1,self.obs_space])
transition=[state,ac,rew,is_t,n_s]
self.memory_queue.append(transition)
state=n_s
if is_t:
state=np.reshape(self.env.reset(),[1,self.obs_space])
memory_size+=1
print("Burned Memory Queue")
def parse_arguments():
parser = argparse.ArgumentParser(description='Deep Q Network Argument Parser')
parser.add_argument('--env',dest='env',type=str)
parser.add_argument('--render',dest='render',type=int,default=0)
parser.add_argument('--train',dest='train',type=int,default=1)
parser.add_argument('--type',dest='model_type',type=str)
parser.add_argument('--save_folder',dest='save_folder',type=str,default=None)
parser.add_argument('--model_file',dest='model_file',type=str,default=None)
return parser.parse_args()
def main(args):
args = parse_arguments()
env = gym.make(args.env)
if(args.train):
("Training {} Model with Experience Replay".format(args.model_type))
model = DQN_Agent(env,args.render,model_type=args.model_type,save_folder=args.save_folder)
model.train()
#Test only if model_file has been given as an input
if(args.model_file!=None):
file_=Path(args.model_file)
try:
abs_path=file_.resolve()
except FileNotFoundError:
print('File Not found')
else:
model.test(model_file=abs_path)
if __name__ == '__main__':
main(sys.argv)