-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
45 lines (33 loc) · 1.14 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import numpy as np
from sklearn.svm import SVR
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import GridSearchCV
from utils import Utils
class Models:
def __init__(self):
self.reg = {
'SVR' : SVR(),
'GRADIENT' : GradientBoostingRegressor()
}
self.params = {
'SVR' : {
'kernel' : ['linear', 'poly', 'rbf'],
'gamma' : ['auto', 'scale'],
'C' : [1,5,10]
}, 'GRADIENT' : {
'loss' : ['‘squared_error’', 'absolute_error'],
'learning_rate' : [0.01, 0.05, 0.1]
}
}
def grid_training(self, X,y):
best_score = 999
best_model = None
for name, reg in self.reg.items():
grid_reg = GridSearchCV(reg, self.params[name], cv=3).fit(X, y.values.ravel())
score = np.abs(grid_reg.best_score_)
if score < best_score:
best_score = score
best_model = grid_reg.best_estimator_
utils = Utils()
utils.model_export(best_model, best_score)