-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
98 lines (76 loc) · 3.04 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!pip install streamlit
from keras_vggface.utils import preprocess_input
from keras_vggface.vggface import VGGFace
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PIL import Image
import os
import cv2
from mtcnn import MTCNN
import numpy as np
detector = MTCNN()
model = VGGFace(model='resnet50', include_top=False,
input_shape=(224, 224, 3), pooling='avg')
feature_list = pickle.load(open('embedding.pkl', 'rb'))
filenames = pickle.load(open('filenames.pkl', 'rb'))
def extract_features(img_path, model, detector):
img = cv2.imread(img_path)
results = detector.detect_faces(img)
x, y, width, height = results[0]['box']
face = img[y:y + height, x:x + width]
# extract its features
image = Image.fromarray(face)
image = image.resize((224, 224))
face_array = np.asarray(image)
face_array = face_array.astype('float32')
expanded_img = np.expand_dims(face_array, axis=0)
preprocessed_img = preprocess_input(expanded_img)
result = model.predict(preprocessed_img).flatten()
return result
def recommend(feature_list, features):
similarity = []
for i in range(len(feature_list)):
similarity.append(cosine_similarity(features.reshape(
1, -1), feature_list[i].reshape(1, -1))[0][0])
result = sorted(list(enumerate(similarity)),
reverse=True, key=lambda x: x[1])[0]
index_pos = result[0]
percentage = result[1]
return index_pos, percentage
def save_uploaded_image(uploaded_image):
try:
with open(os.path.join('uploads', uploaded_image.name), 'wb') as f:
f.write(uploaded_image.getbuffer())
return True
except:
return False
st.title('Which bollywood celebrity do you look like?')
uploaded_image = st.file_uploader('Upload an image')
if uploaded_image is not None:
# save the image in a directory
if save_uploaded_image(uploaded_image):
# load the image
display_image = Image.open(uploaded_image)
resized_display_img = display_image.resize((260, 320), Image.ANTIALIAS)
# extract the features
features = extract_features(os.path.join(
'uploads', uploaded_image.name), model, detector)
# recommend
img_path, percentage = recommend(feature_list, features)
actor_path = filenames[img_path]
predicted_actor = " ".join(
actor_path.split('\\')[1].split('_'))
display_pred_image = Image.open(actor_path)
resized_pred_img = display_pred_image.resize(
(260, 320), Image.ANTIALIAS)
# display
st.header(
f'You look like {predicted_actor} with {np.round(percentage*100,0)}% similarity')
col1, col2 = st.columns(2)
with col1:
st.header('Your uploaded image')
st.image(resized_display_img)
with col2:
st.header('Your celeb look-alike')
st.image(resized_pred_img)