-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
190 lines (162 loc) · 9.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from model import Predictor
from dataloader import MovingMNIST, KTH
from utils import *
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import lpips
import argparse
import numpy as np
import time
import os
seed = 1234
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='movingmnist',
help='training dataset (movingmnist or kth)')
parser.add_argument('--workers', type=int, default=4,
help='number of data loading workers')
parser.add_argument('--train_data_dir', type=str, default='enter_the_path',
help='directory of training set')
parser.add_argument('--valid_data_dir', type=str, default='enter_the_path',
help='directory of validation set')
parser.add_argument('--checkpoint_load', type=bool, default=False,
help='whether to load checkpoint')
parser.add_argument('--checkpoint_load_file', type=str, default='enter_the_path',
help='file path for loading checkpoint')
parser.add_argument('--checkpoint_save_dir', type=str, default='./checkpoints',
help='directory for saving checkpoints')
parser.add_argument('--img_size', type=int, default=64,
help='height and width of video frame')
parser.add_argument('--img_channel', type=int, default=1,
help='channel of video frame')
parser.add_argument('--memory_size', type=int, default=100,
help='memory slot size')
parser.add_argument('--short_len', type=int, default=10,
help='number of input short-term frames')
parser.add_argument('--long_len', type=int, default=30,
help='number of input long-term frames')
parser.add_argument('--out_len', type=int, default=30,
help='number of output predicted frames')
parser.add_argument('--batch_size', type=int, default=128,
help='mini-batch size')
parser.add_argument('--lr', type=float, default=0.0002,
help='learning rate')
parser.add_argument('--iterations', type=int, default=300000,
help='number of total iterations')
parser.add_argument('--iterations_warmup', type=int, default=5000,
help='number of iterations for warming up model')
parser.add_argument('--print_freq', type=int, default=1000,
help='frequency of printing logs')
args = parser.parse_args()
if __name__ == '__main__':
if not os.path.isdir(args.checkpoint_save_dir):
os.makedirs(args.checkpoint_save_dir)
# define the model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pred_model = Predictor(args).to(device)
pred_model = nn.DataParallel(pred_model)
# optionally load checkpoint
if args.checkpoint_load:
pred_model.load_state_dict(torch.load(args.checkpoint_load_file))
print('Checkpoint is loaded from ' + args.checkpoint_load_file)
# prepare dataloader for selected dataset
if args.dataset == 'movingmnist':
train_dataset = MovingMNIST(args.train_data_dir, seq_len=args.short_len+args.out_len, train=True)
trainloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True)
valid_dataset = MovingMNIST(args.valid_data_dir, seq_len=args.short_len+args.out_len, train=False)
validloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, drop_last=False)
elif args.dataset == 'kth':
train_dataset = KTH(args.train_data_dir, seq_len=args.short_len+args.out_len, train=True)
trainloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True)
valid_dataset = KTH(args.valid_data_dir, seq_len=args.short_len+args.out_len, train=False)
validloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, drop_last=False)
# define optimizer and loss function
optimizer = torch.optim.Adam(pred_model.parameters(), lr=args.lr)
l1_loss, l2_loss = nn.L1Loss().to(device), nn.MSELoss().to(device)
lpips_dist = lpips.LPIPS(net = 'alex').to(device)
mse_min, psnr_max, ssim_max, lpips_min = 99999, 0, 0, 99999
train_loss = AverageMeter()
valid_mse, valid_psnr, valid_ssim, valid_lpips = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
print('Start training...')
start_time = time.time()
data_iterator = iter(trainloader)
for train_i in range(args.iterations):
try:
train_data = next(data_iterator)
except:
data_iterator = iter(trainloader)
train_data = next(data_iterator)
# define data indexes
short_start, short_end = 0, args.short_len
long_start = np.random.randint(0, args.short_len+args.out_len-args.long_len+1)
long_end = long_start+args.long_len
out_gt_start, out_gt_end = short_end, short_end+args.out_len
# obtain input data and output gt
train_data = torch.stack(train_data).to(device)
train_data = train_data.transpose(dim0=0, dim1=1) # make (N, T, C, H, W)
short_data = train_data[:, short_start:short_end, :, :, :]
long_data = train_data[:, long_start:long_end, :, :, :]
out_gt = train_data[:, out_gt_start:out_gt_end, :, :, :]
# predict only 10 frames in the first few iterations to warm up the model
if (not args.checkpoint_load) and (train_i < args.iterations_warmup):
train_out_len = 10
long_data = train_data[:, short_start:out_gt_start+train_out_len, :, :, :]
out_gt = train_data[:, out_gt_start:out_gt_start+train_out_len, :, :, :]
else:
train_out_len = args.out_len
pred_model.train()
# training phase 1 with long-term sequence
pred_model.module.memory.memory_w.requires_grad = True # train memory weights
out_pred = pred_model(short_data, long_data, train_out_len, phase=1)
loss_p1 = l1_loss(out_pred, out_gt) + l2_loss(out_pred, out_gt)
optimizer.zero_grad()
loss_p1.backward()
optimizer.step()
# training phase 2 without long-term sequence
pred_model.module.memory.memory_w.requires_grad = False # do not train memory weights
out_pred = pred_model(short_data, None, train_out_len, phase=2)
loss_p2 = l1_loss(out_pred, out_gt) + l2_loss(out_pred, out_gt)
optimizer.zero_grad()
loss_p2.backward()
optimizer.step()
train_loss.update(float(loss_p1) +float(loss_p2))
if (train_i+1) % args.print_freq == 0:
torch.save(pred_model.state_dict(), args.checkpoint_save_dir+'/trained_file_'+str(train_i+1).zfill(6)+'.pt')
# validation phase
pred_model.eval()
with torch.no_grad():
for valid_data in validloader:
# define data indexes
short_start, short_end = 0, args.short_len
out_gt_start, out_gt_end = short_end, short_end+args.out_len
# obtain input data and output gt
valid_data = torch.stack(valid_data).to(device)
valid_data = valid_data.transpose(dim0=0, dim1=1) # make (N, T, C, H, W)
short_data = valid_data[:, short_start:short_end, :, :, :]
out_gt = valid_data[:, out_gt_start:out_gt_end, :, :, :]
# frame prediction and calculate evaluation metrics
out_pred = pred_model(short_data, None, args.out_len, phase=2)
out_pred = torch.clamp(out_pred, min = 0, max = 1)
mse, psnr, ssim, lpips = calculate_metrics(out_pred, out_gt, lpips_dist, args)
batch_size_current = valid_data.shape[0]
valid_mse.update(np.mean(mse), batch_size_current)
valid_psnr.update(np.mean(psnr), batch_size_current)
valid_ssim.update(np.mean(ssim), batch_size_current)
valid_lpips.update(np.mean(lpips), batch_size_current)
mse_min = valid_mse.avg if valid_mse.avg < mse_min else mse_min
psnr_max = valid_psnr.avg if valid_psnr.avg > psnr_max else psnr_max
ssim_max = valid_ssim.avg if valid_ssim.avg > ssim_max else ssim_max
lpips_min = valid_lpips.avg if valid_lpips.avg < lpips_min else lpips_min
elapsed_time = time.time() - start_time; start_time = time.time()
print('******** iter [{}] / epoch [{:.4f}] / loss [{:.4f}] ********'
.format(train_i+1, (train_i+1)/len(trainloader), train_loss.avg))
print('[current] mse: {:.3f}, psnr: {:.3f}, ssim: {:.3f}, lpips: {:.3f}'
.format(valid_mse.avg, valid_psnr.avg, valid_ssim.avg, valid_lpips.avg))
print('[ best ] mse: {:.3f}, psnr: {:.3f}, ssim: {:.3f}, lpips: {:.3f}'
.format(mse_min, psnr_max, ssim_max, lpips_min))
print('elapsed time: {:.0f} sec'.format(elapsed_time))
train_loss.reset(); valid_mse.reset(); valid_psnr.reset(); valid_ssim.reset(); valid_lpips.reset()