forked from Akkudoktor-EOS/EOS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask_server.py
executable file
·286 lines (235 loc) · 10.5 KB
/
flask_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python3
import os
import sys
from datetime import datetime
import matplotlib
# Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
matplotlib.use("Agg")
import pandas as pd
from flask import Flask, jsonify, redirect, request, send_from_directory, url_for
from modules.class_load import LoadForecast
from modules.class_load_container import Gesamtlast
from modules.class_load_corrector import LoadPredictionAdjuster
from modules.class_optimize import isfloat, optimization_problem
from modules.class_pv_forecast import PVForecast
from modules.class_strompreis import HourlyElectricityPriceForecast
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import get_start_enddate, optimization_hours, prediction_hours
app = Flask(__name__)
opt_class = optimization_problem(
prediction_hours=prediction_hours, strafe=10, optimization_hours=optimization_hours
)
@app.route("/strompreis", methods=["GET"])
def flask_strompreis():
# Get the current date and the end date based on prediction hours
date_now, date = get_start_enddate(
prediction_hours, startdate=datetime.now().date()
)
filepath = os.path.join(
r"test_data", r"strompreise_akkudokAPI.json"
) # Adjust the path to the JSON file
price_forecast = HourlyElectricityPriceForecast(
source=f"https://api.akkudoktor.net/prices?start={date_now}&end={date}",
prediction_hours=prediction_hours,
)
specific_date_prices = price_forecast.get_price_for_daterange(
date_now, date
) # Fetch prices for the specified date range
return jsonify(specific_date_prices.tolist())
# Endpoint to handle total load calculation based on the latest measured data
@app.route("/gesamtlast", methods=["POST"])
def flask_gesamtlast():
# Retrieve data from the JSON body
data = request.get_json()
# Extract year_energy and prediction_hours from the request JSON
year_energy = float(data.get("year_energy"))
prediction_hours = int(
data.get("hours", 48)
) # Default to 48 hours if not specified
# Measured data in JSON format
measured_data_json = data.get("measured_data")
measured_data = pd.DataFrame(measured_data_json)
measured_data["time"] = pd.to_datetime(measured_data["time"])
# Ensure datetime has timezone info for accurate calculations
if measured_data["time"].dt.tz is None:
measured_data["time"] = measured_data["time"].dt.tz_localize("Europe/Berlin")
else:
measured_data["time"] = measured_data["time"].dt.tz_convert("Europe/Berlin")
# Remove timezone info after conversion to simplify further processing
measured_data["time"] = measured_data["time"].dt.tz_localize(None)
# Instantiate LoadForecast and generate forecast data
file_path = os.path.join("data", "load_profiles.npz")
lf = LoadForecast(filepath=file_path, year_energy=year_energy)
forecast_list = []
# Generate daily forecasts for the date range based on measured data
for single_date in pd.date_range(
measured_data["time"].min().date(), measured_data["time"].max().date()
):
date_str = single_date.strftime("%Y-%m-%d")
daily_forecast = lf.get_daily_stats(date_str)
mean_values = daily_forecast[0]
hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
daily_forecast_df = pd.DataFrame({"time": hours, "Last Pred": mean_values})
forecast_list.append(daily_forecast_df)
# Concatenate all daily forecasts into a single DataFrame
predicted_data = pd.concat(forecast_list, ignore_index=True)
# Create LoadPredictionAdjuster instance to adjust the predictions based on measured data
adjuster = LoadPredictionAdjuster(measured_data, predicted_data, lf)
adjuster.calculate_weighted_mean() # Calculate weighted mean for adjustment
adjuster.adjust_predictions() # Adjust predictions based on measured data
future_predictions = adjuster.predict_next_hours(
prediction_hours
) # Predict future load
# Extract household power predictions
leistung_haushalt = future_predictions["Adjusted Pred"].values
gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
gesamtlast.hinzufuegen(
"Haushalt", leistung_haushalt
) # Add household load to total load calculation
# Calculate the total load
last = gesamtlast.gesamtlast_berechnen() # Compute total load
return jsonify(last.tolist())
@app.route("/gesamtlast_simple", methods=["GET"])
def flask_gesamtlast_simple():
if request.method == "GET":
year_energy = float(
request.args.get("year_energy")
) # Get annual energy value from query parameters
date_now, date = get_start_enddate(
prediction_hours, startdate=datetime.now().date()
) # Get the current date and prediction end date
###############
# Load Forecast
###############
file_path = os.path.join("data", "load_profiles.npz")
lf = LoadForecast(
filepath=file_path, year_energy=year_energy
) # Instantiate LoadForecast with specified parameters
leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[
0
] # Get expected household load for the date range
gesamtlast = Gesamtlast(
prediction_hours=prediction_hours
) # Create Gesamtlast instance
gesamtlast.hinzufuegen(
"Haushalt", leistung_haushalt
) # Add household load to total load calculation
# ###############
# # WP (Heat Pump)
# ##############
# leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
# gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
last = gesamtlast.gesamtlast_berechnen() # Calculate total load
print(last) # Output total load
return jsonify(last.tolist()) # Return total load as JSON
@app.route("/pvforecast", methods=["GET"])
def flask_pvprognose():
if request.method == "GET":
# Retrieve URL and AC power measurement from query parameters
url = request.args.get("url")
ac_power_measurement = request.args.get("ac_power_measurement")
date_now, date = get_start_enddate(
prediction_hours, startdate=datetime.now().date()
)
###############
# PV Forecast
###############
PVforecast = PVForecast(
prediction_hours=prediction_hours, url=url
) # Instantiate PVForecast with given parameters
if isfloat(
ac_power_measurement
): # Check if the AC power measurement is a valid float
PVforecast.update_ac_power_measurement(
date_time=datetime.now(),
ac_power_measurement=float(ac_power_measurement),
) # Update measurement
# Get PV forecast and temperature forecast for the specified date range
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now, date)
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now, date)
# Return both forecasts as a JSON response
ret = {
"temperature": temperature_forecast.tolist(),
"pvpower": pv_forecast.tolist(),
}
return jsonify(ret)
@app.route("/optimize", methods=["POST"])
def flask_optimize():
if request.method == "POST":
from datetime import datetime
# Retrieve optimization parameters from the request JSON
parameter = request.json
# Check for required parameters
required_parameters = [
"preis_euro_pro_wh_akku",
"strompreis_euro_pro_wh",
"gesamtlast",
"pv_akku_cap",
"einspeiseverguetung_euro_pro_wh",
"pv_forecast",
"temperature_forecast",
"eauto_min_soc",
"eauto_cap",
"eauto_charge_efficiency",
"eauto_charge_power",
"eauto_soc",
"pv_soc",
"start_solution",
"haushaltsgeraet_dauer",
"haushaltsgeraet_wh",
]
# Identify any missing parameters
missing_params = [p for p in required_parameters if p not in parameter]
if missing_params:
return jsonify(
{"error": f"Missing parameter: {', '.join(missing_params)}"}
), 400 # Return error for missing parameters
# Perform optimization simulation
result = opt_class.optimierung_ems(
parameter=parameter, start_hour=datetime.now().hour
)
# Optional min SoC PV Battery
if "min_soc_prozent" not in parameter:
parameter["min_soc_prozent"] = None
return jsonify(result) # Return optimization results as JSON
@app.route("/visualisierungsergebnisse.pdf")
def get_pdf():
# Endpoint to serve the generated PDF with visualization results
return send_from_directory(
"", "visualisierungsergebnisse.pdf"
) # Adjust the directory if needed
@app.route("/site-map")
def site_map():
# Function to generate a site map of valid routes in the application
def print_links(links):
content = "<h1>Valid routes</h1><ul>"
for link in links:
content += f"<li><a href='{link}'>{link}</a></li>"
content += "</ul>"
return content
# Check if the route has no empty parameters
def has_no_empty_params(rule):
defaults = rule.defaults if rule.defaults is not None else ()
arguments = rule.arguments if rule.arguments is not None else ()
return len(defaults) >= len(arguments)
# Collect all valid GET routes without empty parameters
links = []
for rule in app.url_map.iter_rules():
if "GET" in rule.methods and has_no_empty_params(rule):
url = url_for(rule.endpoint, **(rule.defaults or {}))
links.append(url)
return print_links(sorted(links)) # Return the sorted links as HTML
@app.route("/")
def root():
# Redirect the root URL to the site map
return redirect("/site-map", code=302)
if __name__ == "__main__":
try:
# Set host and port from environment variables or defaults
host = os.getenv("FLASK_RUN_HOST", "0.0.0.0")
port = os.getenv("FLASK_RUN_PORT", 8503)
app.run(debug=True, host=host, port=port) # Run the Flask application
except Exception as e:
print(
f"Could not bind to host {host}:{port}. Error: {e}"
) # Error handling for binding issues