-
Notifications
You must be signed in to change notification settings - Fork 32
/
vae.py
50 lines (38 loc) · 1.52 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
from utils import get_args_vae
# Parse input augments
args = get_args_vae()
# Set PyTorch to use only the specified GPU
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, args.gpu))
# Make project directory if not exist
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
from trainer import SurfVAETrainer
from dataset import SurfData
from trainer import EdgeVAETrainer
from dataset import EdgeData
def run(args):
# Initialize dataset loader and trainer
if args.option == 'surface':
train_dataset = SurfData(args.data, args.train_list, validate=False, aug=args.data_aug)
val_dataset = SurfData(args.data, args.val_list, validate=True, aug=False)
vae = SurfVAETrainer(args, train_dataset, val_dataset)
else:
assert args.option == 'edge', 'please choose between surface or edge'
train_dataset = EdgeData(args.data, args.train_list, validate=False, aug=args.data_aug)
val_dataset = EdgeData(args.data, args.val_list, validate=True, aug=False)
vae = EdgeVAETrainer(args, train_dataset, val_dataset)
# Main training loop
print('Start training...')
for _ in range(args.train_nepoch):
# Train for one epoch
vae.train_one_epoch()
# Evaluate model performance on validation set
if vae.epoch % args.test_nepoch == 0:
vae.test_val()
# save model
if vae.epoch % args.save_nepoch == 0:
vae.save_model()
return
if __name__ == "__main__":
run(args)