-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGloVeMethod.py
53 lines (46 loc) · 2.09 KB
/
GloVeMethod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
import utils
class GloVeMethod:
def __init__(self, glove_input_file='../../../../glove.twitter.27B.25d.txt'):
self.glove_input_file = glove_input_file
self.word2vec_output_file = 'glove.twitter.27B.25d.txt.word2vec'
#glove2word2vec(glove_input_file, self.word2vec_output_file)
def get_filename(self):
filename = '../../../../glove.twitter.27B.25d.txt'
def most_similar(self, query):
glove_input_file = '../../../../glove.twitter.27B.25d.txt'
word2vec_output_file = 'glove.twitter.27B.25d.txt.word2vec'
glove2word2vec(glove_input_file, word2vec_output_file)
model = KeyedVectors.load_word2vec_format(self.word2vec_output_file, binary=False)
result = []
for term in query:
try:
if term[0] == "@" or term[0] == "#":
continue
else:
result.extend([model.most_similar(term)[0], model.most_similar(term)[1], model.most_similar(term)[2]])
except:
pass
return result
#print(model.most_similar(query))
#print(model.most_similar(query)[0])
#print(model.most_similar(query)[0][0])
if __name__ == '__main__':
#g = GloVeMethod('glove.twitter.27B.25d.txt')
#g.most_similar('america')
#glove_input_file = 'glove.6B.100d.txt'
#word2vec_output_file = 'glove.6B.100d.txt.word2vec'
#glove2word2vec(glove_input_file, word2vec_output_file)
# load the Stanford GloVe model
#filename = 'glove.6B.100d.txt.word2vec'
#model = KeyedVectors.load_word2vec_format(filename, binary=False)
# calculate: (king - man) + woman = ?
# print(model.most_similar('obama'))
# print(model.most_similar('banana'))
# print(model.most_similar(negative='banana'))
# result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
# print(result)
#People should NOT wear masks while exercising
inverted_index = utils.load_obj('inverted_index')
print(inverted_index)