-
Notifications
You must be signed in to change notification settings - Fork 0
/
RH_CC110.cpp
493 lines (436 loc) · 17.2 KB
/
RH_CC110.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// RH_CC110.cpp
//
// Driver for Texas Instruments CC110L transceiver.
//
// Copyright (C) 2016 Mike McCauley
// $Id: RH_CC110.cpp,v 1.11 2020/01/05 07:02:23 mikem Exp $
#include <RH_CC110.h>
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_CC110, allowing you to have
// 2 or more LORAs per Arduino
RH_CC110* RH_CC110::_deviceForInterrupt[RH_CC110_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_CC110::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// We need 2 tables of modem configuration registers, since some values change depending on the Xtal frequency
// These are indexed by the values of ModemConfigChoice
// Canned modem configurations generated with the TI SmartRF Studio v7 version 2.3.0 on boodgie
// based on the sample 'Typical settings'
// Stored in flash (program) memory to save SRAM
// For 26MHz crystals
PROGMEM static const RH_CC110::ModemConfig MODEM_CONFIG_TABLE_26MHZ[] =
{
// 0B 0C 10 11 12 15 19 1A 1B 1C 1D 21 22 23 24 25 26 2C 2D 2E
{0x06, 0x00, 0xf5, 0x83, 0x13, 0x15, 0x16, 0x6c, 0x03, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb1_2Fd5_2
{0x06, 0x00, 0xf6, 0x83, 0x13, 0x15, 0x16, 0x6c, 0x03, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb2_4Fd5_2
{0x06, 0x00, 0xc7, 0x83, 0x13, 0x40, 0x16, 0x6c, 0x43, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb4_8Fd25_4
{0x06, 0x00, 0xc8, 0x93, 0x13, 0x34, 0x16, 0x6c, 0x43, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb10Fd19
{0x06, 0x00, 0xca, 0x83, 0x13, 0x35, 0x16, 0x6c, 0x43, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb38_4Fd20
{0x08, 0x00, 0x7b, 0x83, 0x13, 0x42, 0x1d, 0x1c, 0xc7, 0x00, 0xb2, 0xb6, 0x10, 0xea, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb76_8Fd32
{0x08, 0x00, 0x5b, 0xf8, 0x13, 0x47, 0x1d, 0x1c, 0xc7, 0x00, 0xb2, 0xb6, 0x10, 0xea, 0x2a, 0x00, 0x1f, 0x81, 0x31, 0x09}, // GFSK_Rb100Fd47
{0x0c, 0x00, 0x2d, 0x3b, 0x13, 0x62, 0x1d, 0x1c, 0xc7, 0x00, 0xb0, 0xb6, 0x10, 0xea, 0x2a, 0x00, 0x1f, 0x88, 0x31, 0x09}, // GFSK_Rb250Fd127
};
// For 27MHz crystals
PROGMEM static const RH_CC110::ModemConfig MODEM_CONFIG_TABLE_27MHZ[] =
{
// 0B 0C 10 11 12 15 19 1A 1B 1C 1D 21 22 23 24 25 26 2C 2D 2E
{0x06, 0x00, 0xf5, 0x75, 0x13, 0x14, 0x16, 0x6c, 0x03, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb1_2Fd5_2
{0x06, 0x00, 0xf6, 0x75, 0x13, 0x14, 0x16, 0x6c, 0x03, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb2_4Fd5_2
{0x06, 0x00, 0xc7, 0x75, 0x13, 0x37, 0x16, 0x6c, 0x43, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb4_8Fd25_4
{0x06, 0x00, 0xc8, 0x84, 0x13, 0x33, 0x16, 0x6c, 0x43, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb10Fd19
{0x06, 0x00, 0xca, 0x75, 0x13, 0x34, 0x16, 0x6c, 0x43, 0x40, 0x91, 0x56, 0x10, 0xe9, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb38_4Fd20
{0x08, 0x00, 0x7b, 0x75, 0x13, 0x42, 0x1d, 0x1c, 0xc7, 0x00, 0xb2, 0xb6, 0x10, 0xea, 0x2a, 0x00, 0x1f, 0x81, 0x35, 0x09}, // GFSK_Rb76_8Fd32
{0x08, 0x00, 0x5b, 0xf8, 0x13, 0x47, 0x1d, 0x1c, 0xc7, 0x00, 0xb2, 0xb6, 0x10, 0xea, 0x2a, 0x00, 0x1f, 0x81, 0x31, 0x09}, // GFSK_Rb100Fd47
{0x0c, 0x00, 0x2d, 0x2f, 0x13, 0x62, 0x1d, 0x1c, 0xc7, 0x00, 0xb0, 0xb6, 0x10, 0xea, 0x2a, 0x00, 0x1f, 0x88, 0x31, 0x09}, // GFSK_Rb250Fd127
};
// These power outputs are based on the suggested optimum values for
// multilayer inductors in the 915MHz frequency band. Per table 5-15.
// Yes these are not linear.
// Caution: this table is indexed by the values of enum TransmitPower
// Do not change one without changing the other.
// If you do not like these values, use setPaTable() directly.
PROGMEM static const uint8_t paPowerValues[] =
{
0x03, // -30dBm
0x0e, // -20dBm
0x1e, // -15dBm
0x27, // -10dBm
0x8e, // 0dBm
0xcd, // 5dBm
0xc7, // 7dBm
0xc0, // 10dBm
};
RH_CC110::RH_CC110(uint8_t slaveSelectPin, uint8_t interruptPin, bool is27MHz, RHGenericSPI& spi)
:
RHNRFSPIDriver(slaveSelectPin, spi),
_rxBufValid(false),
_is27MHz(is27MHz)
{
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
}
bool RH_CC110::init()
{
if (!RHNRFSPIDriver::init())
return false;
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Tell the low level SPI interface we will use SPI within this interrupt
spiUsingInterrupt(interruptNumber);
// Reset the chip
// Strobe the reset
uint8_t val = spiCommand(RH_CC110_STROBE_30_SRES); // Reset
delay(100);
val = spiCommand(RH_CC110_STROBE_36_SIDLE); // IDLE
if (val != 0x0f)
return false; // No chip there or reset failed.
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= RH_CC110_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, RISING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, RISING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, RISING);
else
return false; // Too many devices, not enough interrupt vectors
spiWriteRegister(RH_CC110_REG_02_IOCFG0, RH_CC110_GDO_CFG_CRC_OK_AUTORESET); // gdo0 interrupt on CRC_OK
spiWriteRegister(RH_CC110_REG_06_PKTLEN, RH_CC110_MAX_PAYLOAD_LEN); // max packet length
spiWriteRegister(RH_CC110_REG_07_PKTCTRL1, RH_CC110_CRC_AUTOFLUSH); // no append status, crc autoflush, no addr check
spiWriteRegister(RH_CC110_REG_08_PKTCTRL0, RH_CC110_PKT_FORMAT_NORMAL | RH_CC110_CRC_EN | RH_CC110_LENGTH_CONFIG_VARIABLE);
spiWriteRegister(RH_CC110_REG_13_MDMCFG1, RH_CC110_NUM_PREAMBLE_4); // 4 preamble bytes, chan spacing not used
spiWriteRegister(RH_CC110_REG_17_MCSM1, RH_CC110_CCA_MODE_RSSI_PACKET | RH_CC110_RXOFF_MODE_RX | RH_CC110_TXOFF_MODE_IDLE);
spiWriteRegister(RH_CC110_REG_18_MCSM0, RH_CC110_FS_AUTOCAL_FROM_IDLE | RH_CC110_PO_TIMEOUT_64); // cal when going to tx or rx
spiWriteRegister(RH_CC110_REG_20_WORCTRL, 0xfb); // from smartrf
spiWriteRegister(RH_CC110_REG_29_FSTEST, 0x59); // from smartrf
spiWriteRegister(RH_CC110_REG_2A_PTEST, 0x7f); // from smartrf
spiWriteRegister(RH_CC110_REG_2B_AGCTEST, 0x3f); // from smartrf
// Set some reasonable default values
uint8_t syncWords[] = { 0xd3, 0x91 };
setSyncWords(syncWords, sizeof(syncWords));
setTxPower(TransmitPower5dBm);
setFrequency(915.0);
setModemConfig(GFSK_Rb1_2Fd5_2);
return true;
}
void RH_CC110::setIs27MHz(bool is27MHz)
{
_is27MHz = is27MHz;
}
// C++ level interrupt handler for this instance
// We use this to get RxDone and TxDone interrupts
void RH_CC110::handleInterrupt()
{
// Serial.println("I");
if (_mode == RHModeRx)
{
// Radio is configured to stay in RX until we move it to IDLE after a CRC_OK message for us
// We only get interrupts in RX mode, on CRC_OK
uint8_t raw_rssi = spiBurstReadRegister(RH_CC110_REG_34_RSSI); // Was set when sync word was detected
// Conversion of RSSI value to received power level in dBm per TI section 5.18.2
if (raw_rssi >= 128)
_lastRssi = (((int16_t)raw_rssi - 256) / 2) - 74;
else
_lastRssi = ((int16_t)raw_rssi / 2) - 74;
_bufLen = spiReadRegister(RH_CC110_REG_3F_FIFO);
if (_bufLen < 4)
{
// Something wrong there, flush the FIFO
spiCommand(RH_CC110_STROBE_3A_SFRX);
clearRxBuf();
return;
}
spiBurstRead(RH_CC110_REG_3F_FIFO | RH_CC110_SPI_BURST_MASK | RH_CC110_SPI_READ_MASK, _buf, _bufLen);
// All good so far. See if its for us
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Done
}
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_CC110.
// 3 interrupts allows us to have 3 different devices
void RH_INTERRUPT_ATTR RH_CC110::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void RH_INTERRUPT_ATTR RH_CC110::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void RH_INTERRUPT_ATTR RH_CC110::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
uint8_t RH_CC110::spiReadRegister(uint8_t reg)
{
return spiRead((reg & 0x3f) | RH_CC110_SPI_READ_MASK);
}
uint8_t RH_CC110::spiBurstReadRegister(uint8_t reg)
{
return spiRead((reg & 0x3f) | RH_CC110_SPI_READ_MASK | RH_CC110_SPI_BURST_MASK);
}
uint8_t RH_CC110::spiWriteRegister(uint8_t reg, uint8_t val)
{
return spiWrite((reg & 0x3f), val);
}
uint8_t RH_CC110::spiBurstWriteRegister(uint8_t reg, const uint8_t* src, uint8_t len)
{
return spiBurstWrite((reg & 0x3f) | RH_CC110_SPI_BURST_MASK, src, len);
}
bool RH_CC110::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint8_t i;
for (i = 0; i <= 0x2f; i++)
{
Serial.print(i, HEX);
Serial.print(": ");
Serial.println(spiReadRegister(i), HEX);
}
// Burst registers
for (i = 0x30; i <= 0x3e; i++)
{
Serial.print(i, HEX);
Serial.print(": ");
Serial.println(spiBurstReadRegister(i), HEX);
}
#endif
return true;
}
// Check whether the latest received message is complete and uncorrupted
void RH_CC110::validateRxBuf()
{
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
bool RH_CC110::available()
{
if (_mode == RHModeTx)
return false;
if (_rxBufValid) // Will be set by the interrupt handler when a good message is received
return true;
setModeRx(); // Make sure we are receiving
return false; // Nothing yet
}
void RH_CC110::clearRxBuf()
{
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
}
bool RH_CC110::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen - RH_CC110_HEADER_LEN)
*len = _bufLen - RH_CC110_HEADER_LEN;
memcpy(buf, _buf + RH_CC110_HEADER_LEN, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
}
bool RH_CC110::send(const uint8_t* data, uint8_t len)
{
if (len > RH_CC110_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
if (!waitCAD())
return false; // Check channel activity
spiWriteRegister(RH_CC110_REG_3F_FIFO, len + RH_CC110_HEADER_LEN);
spiWriteRegister(RH_CC110_REG_3F_FIFO,_txHeaderTo);
spiWriteRegister(RH_CC110_REG_3F_FIFO,_txHeaderFrom);
spiWriteRegister(RH_CC110_REG_3F_FIFO,_txHeaderId);
spiWriteRegister(RH_CC110_REG_3F_FIFO,_txHeaderFlags);
spiBurstWriteRegister(RH_CC110_REG_3F_FIFO, data, len);
// Radio returns to Idle when TX is finished
// need waitPacketSent() to detect change of _mode and TX completion
setModeTx();
return true;
}
uint8_t RH_CC110::maxMessageLength()
{
return RH_CC110_MAX_MESSAGE_LEN;
}
void RH_CC110::handleOverFlows(uint8_t status)
{
spiCommand(RH_CC110_STROBE_3A_SFRX);
//Handle RX and TX overflows so we don't get stuck in either state
if( (status&RH_CC110_STATUS_RXFIFO_OVERFLOW) == RH_CC110_STATUS_RXFIFO_OVERFLOW ) {
spiCommand(RH_CC110_STROBE_3A_SFRX);
clearRxBuf();
}
else if( (status&RH_CC110_STATUS_TXFIFO_UNDERFLOW) == RH_CC110_STATUS_TXFIFO_UNDERFLOW ) {
spiCommand(RH_CC110_STROBE_3B_SFTX);
}
}
void RH_CC110::setModeIdle()
{
if (_mode != RHModeIdle)
{
uint8_t status = spiCommand(RH_CC110_STROBE_36_SIDLE);
_mode = RHModeIdle;
handleOverFlows(status);
}
}
bool RH_CC110::sleep()
{
if (_mode != RHModeSleep)
{
spiCommand(RH_CC110_STROBE_36_SIDLE); //preceeding sleep IDLE first
spiCommand(RH_CC110_STROBE_39_SPWD);
_mode = RHModeSleep;
}
return true;
}
void RH_CC110::setModeRx()
{
if (_mode != RHModeRx)
{
// Radio is configuewd to stay in RX mode
// only receipt of a CRC_OK wil cause us to return it to IDLE
spiCommand(RH_CC110_STROBE_34_SRX);
_mode = RHModeRx;
}
}
void RH_CC110::setModeTx()
{
if (_mode != RHModeTx)
{
spiCommand(RH_CC110_STROBE_35_STX);
_mode = RHModeTx;
}
}
uint8_t RH_CC110::statusRead()
{
uint8_t status = spiCommand(RH_CC110_STROBE_3D_SNOP);
handleOverFlows(status);
return status;
}
// Sigh, this chip has no TXDONE type interrupt, so we have to poll
bool RH_CC110::waitPacketSent()
{
// If we are not currently in transmit mode, there is no packet to wait for
if (_mode != RHModeTx)
return false;
// Caution: may transition through CALIBRATE
while ((statusRead() & RH_CC110_STATUS_STATE) != RH_CC110_STATUS_IDLE)
YIELD;
_mode = RHModeIdle;
return true;
}
bool RH_CC110::setTxPower(TransmitPower power)
{
if (power > sizeof(paPowerValues))
return false;
uint8_t patable[2];
memcpy_P(&patable[0], (void*)&paPowerValues[power], sizeof(uint8_t));
patable[1] = 0x00;
setPaTable(patable, sizeof(patable));
return true;
}
void RH_CC110::setPaTable(uint8_t* patable, uint8_t patablesize)
{
spiBurstWriteRegister(RH_CC110_REG_3E_PATABLE, patable, patablesize);
}
bool RH_CC110::setFrequency(float centre)
{
// From section 5.21: fcarrier = fxosc / 2^16 * FREQ
uint32_t FREQ;
float fxosc = _is27MHz ? 27.0 : 26.0;
FREQ = (uint32_t)(centre * 65536 / fxosc);
// Some trivial checks
if (FREQ & 0xff000000)
return false;
spiWriteRegister(RH_CC110_REG_0D_FREQ2, (FREQ >> 16) & 0xff);
spiWriteRegister(RH_CC110_REG_0E_FREQ1, (FREQ >> 8) & 0xff);
spiWriteRegister(RH_CC110_REG_0F_FREQ0, FREQ & 0xff);
// Radio is configured to calibrate automatically whenever it enters RX or TX mode
// so no need to check for PLL lock here
return true;
}
// Sets registers from a canned modem configuration structure
void RH_CC110::setModemRegisters(const ModemConfig* config)
{
spiWriteRegister(RH_CC110_REG_0B_FSCTRL1, config->reg_0b);
spiWriteRegister(RH_CC110_REG_0C_FSCTRL0, config->reg_0c);
spiWriteRegister(RH_CC110_REG_10_MDMCFG4, config->reg_10);
spiWriteRegister(RH_CC110_REG_11_MDMCFG3, config->reg_11);
spiWriteRegister(RH_CC110_REG_12_MDMCFG2, config->reg_12);
spiWriteRegister(RH_CC110_REG_15_DEVIATN, config->reg_15);
spiWriteRegister(RH_CC110_REG_19_FOCCFG, config->reg_19);
spiWriteRegister(RH_CC110_REG_1A_BSCFG, config->reg_1a);
spiWriteRegister(RH_CC110_REG_1B_AGCCTRL2, config->reg_1b);
spiWriteRegister(RH_CC110_REG_1C_AGCCTRL1, config->reg_1c);
spiWriteRegister(RH_CC110_REG_1D_AGCCTRL0, config->reg_1d);
spiWriteRegister(RH_CC110_REG_21_FREND1, config->reg_21);
spiWriteRegister(RH_CC110_REG_22_FREND0, config->reg_22);
spiWriteRegister(RH_CC110_REG_23_FSCAL3, config->reg_23);
spiWriteRegister(RH_CC110_REG_24_FSCAL2, config->reg_24);
spiWriteRegister(RH_CC110_REG_25_FSCAL1, config->reg_25);
spiWriteRegister(RH_CC110_REG_26_FSCAL0, config->reg_26);
spiWriteRegister(RH_CC110_REG_2C_TEST2, config->reg_2c);
spiWriteRegister(RH_CC110_REG_2D_TEST1, config->reg_2d);
spiWriteRegister(RH_CC110_REG_2E_TEST0, config->reg_2e);
}
// Set one of the canned Modem configs
// Returns true if its a valid choice
bool RH_CC110::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE_27MHZ) / sizeof(ModemConfig)))
return false;
const RH_CC110::ModemConfig *p = _is27MHz ? MODEM_CONFIG_TABLE_27MHZ : MODEM_CONFIG_TABLE_26MHZ ;
RH_CC110::ModemConfig cfg;
memcpy_P(&cfg, p + index, sizeof(RH_CC110::ModemConfig));
setModemRegisters(&cfg);
return true;
}
void RH_CC110::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
if (!syncWords || len != 2)
return; // Only 2 byte sync words are supported
spiWriteRegister(RH_CC110_REG_04_SYNC1, syncWords[0]);
spiWriteRegister(RH_CC110_REG_05_SYNC0, syncWords[1]);
}