-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrw_sim.jl
278 lines (224 loc) · 8.65 KB
/
rw_sim.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Run code for the total number of simulations = 10 000
# Create vectors to store the differences between obs and simulated data to plot
epsilon_mean_r = Float64[]
epsilon_si = Float64[]
epsilon_sinuosity = Float64[]
simulations = 1000
sims = zeros(simulations)
for i = 1:length(sims)
# Run code for simulated data and "observed" data 10x and get summary stats
# Create vectors to store the 10x values of summary statistics of sim and obs
ten_r_s = Float64[]
ten_si_s = Float64[]
ten_sinuosity_s = Float64[]
ten_r_o = Float64[]
ten_si_o = Float64[]
ten_sinuosity_o = Float64[]
iters = 10
walkers = zeros(iters)
for i = 1:length(walkers)
############################## SIMULATED DATA ##############################
# Initialize vectors to store the xyz coordinates
nsteps = 100
x_s = zeros(nsteps)
y_s = zeros(nsteps)
z_s = zeros(nsteps)
# Set initial time = 0
t_s = 0
# Create vectors to store variables
all_x_s = Float64[]
all_y_s = Float64[]
all_z_s = Float64[]
all_r_s = Float64[]
turn_angles_s = Float64[]
time_s = Float64[]
# Create starting position of the RW at the origin
x_s[1] = 0.0;
y_s[1] = 0.0;
z_s[1] = 0.0;
# Perform a RW of nsteps
for i = 2:length(x_s)
# Sample holding time from exponential distribution or another dist?
t_next_jump = rand(Exponential())
# Update the time
t_s = t_s+t_next_jump
# Creating a random point in 3D with mean step length = 0.5 and
# variance = 0.2
r = rand(TruncatedNormal(0.5,0.1,0,1))
theta = acos(1-2*rand()) # theta between 0:pi radians
phi = 2*pi*rand() # phi between 0:2*pi radians
# Mapping spherical coordinates onto the cartesian plane
dx = r*sin(theta)*cos(phi);
dy = r*sin(theta)*sin(phi);
dz = r*cos(theta);
# Updated position
x_s[i] = x_s[i-1] + dx
y_s[i] = y_s[i-1] + dy
z_s[i] = z_s[i-1] + dz
# Get the current [i] and previous [i-1] coordinates to calculate angle
# between the 2 vectors = turning angle
c_1 = x_s[i], y_s[i], z_s[i]
c_0 = x_s[i-1], y_s[i-1], z_s[i-1]
# Calculate the turning angle between this vector and previous vector
turn_angle = acos(vecdot(c_0,c_1)/sqrt(sum(c_1.*c_1)*sum(c_0.*c_0)))
# Push to store all values associated with a coordinate
push!(all_x_s, x_s[i])
push!(all_y_s, y_s[i])
push!(all_z_s, z_s[i])
push!(all_r_s, r)
push!(turn_angles_s, turn_angle)
push!(time_s, t_s)
end
########## SUMMARY STATS SIMULATED DATA #########
# MEAN STEP LENGTH
mean_r_s = mean(all_r_s)
# STRAIGHTNESS INDEX: D/L
x1 = all_x_s[1]
x2 = all_x_s[end]
y1 = all_y_s[1]
y2 = all_y_s[end]
z1 = all_z_s[1]
z2 = all_z_s[end]
D_s = (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2
D_s = sqrt(D_s)
L = sum(all_r_s)
si_s = D_s / L
# SINUOSITY: sd of turn angles / mean step length
sd_s = std(turn_angles_s[2:end])
sinuosity_s = sd_s / mean_r_s
# println("mean step length S: ", mean_r_s)
# println("si S: ", si_s)
# println("sinuosity S: ", sinuosity_s)
push!(ten_r_s, mean_r_s)
push!(ten_si_s, si_s)
push!(ten_sinuosity_s, sinuosity_s)
############################## OBSERVED DATA ##############################
# Initialize vectors to store the xyz coordinates
nsteps = 100
x_o = zeros(nsteps)
y_o = zeros(nsteps)
z_o = zeros(nsteps)
# Set initial time = 0
t_o = 0
# Create vectors to store variables
all_x_o = Float64[]
all_y_o = Float64[]
all_z_o = Float64[]
all_r_o = Float64[]
turn_angles_o = Float64[]
time_o = Float64[]
# Create starting position of the RW at the origin
x_o[1] = 0.0;
y_o[1] = 0.0;
z_o[1] = 0.0;
# Perform a RW of nsteps
for i = 2:length(x_o)
# Sample holding time from exponential distribution or another dist?
t_next_jump = rand(Exponential())
# Update the time
t_o = t_o+t_next_jump
# Creating a random point in 3D with mean step length = 0.8 and
# variance = 0.2
r = rand(TruncatedNormal(0.8,0.2,0,1))
theta = acos(1-2*rand()) # theta between 0:pi radians
phi = 2*pi*rand() # phi between 0:2*pi radians
# Mapping spherical coordinates onto the cartesian plane
dx = r*sin(theta)*cos(phi);
dy = r*sin(theta)*sin(phi);
dz = r*cos(theta);
# Updated position
x_o[i] = x_o[i-1] + dx
y_o[i] = y_o[i-1] + dy
z_o[i] = z_o[i-1] + dz
# Get the current [i] and previous [i-1] coordinates to calculate angle
# between the 2 vectors = turning angle
c_1 = x_o[i], y_o[i], z_o[i]
c_0 = x_o[i-1], y_o[i-1], z_o[i-1]
# Calculate the turning angle between this vector and previous vector
turn_angle = acos(vecdot(c_0,c_1)/sqrt(sum(c_1.*c_1)*sum(c_0.*c_0)))
# Push to store all values associated with a coordinate
push!(all_x_o, x_o[i])
push!(all_y_o, y_o[i])
push!(all_z_o, z_o[i])
push!(all_r_o, r)
push!(turn_angles_o, turn_angle)
push!(time_o, t_o)
end
########## SUMMARY STATS OBSERVED DATA #########
# MEAN STEP LENGTH
mean_r_o = mean(all_r_o)
# STRAIGHTNESS INDEX: D/L
x1 = all_x_o[1]
x2 = all_x_o[end]
y1 = all_y_o[1]
y2 = all_y_o[end]
z1 = all_z_o[1]
z2 = all_z_o[end]
D_o = (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2
D_o = sqrt(D_o)
L = sum(all_r_o)
si_o = D_o / L
# SINUOSITY: sd of turn angles / mean step length
sd_o = std(turn_angles_o[2:end])
sinuosity_o = sd_o / mean_r_o
# println("mean step length o: ", mean_r_o)
# println("si o: ", si_o)
# println("sinuosity o: ", sinuosity_o)
push!(ten_r_o, mean_r_o)
push!(ten_si_o, si_o)
push!(ten_sinuosity_o, sinuosity_o)
end
# PRINT OUT SS FOR 10X ITERATIONS
# println("ten_r_s: ", ten_r_s)
# println("ten_si_s: ", ten_si_s)
# println("ten_sinuosity_s: ", ten_sinuosity_s)
# println("**********")
# println("ten_r_o: ", ten_r_o)
# println("ten_si_o: ", ten_si_o)
# println("ten_sinuosity_o: ", ten_sinuosity_o)
# println("**********")
# GET AVERAGES FOR THE SS OF 10X ITERATIONS AND PRINT
average_r_s = mean(ten_r_s)
average_si_s = mean(ten_si_s)
average_sinuosity_s = mean(ten_sinuosity_s)
average_r_o = mean(ten_r_o)
average_si_o = mean(ten_si_o)
average_sinuosity_o = mean(ten_sinuosity_o)
# println("average_r_s: ", average_r_s)
# println("average_si_s: ", average_si_s)
# println("average_sinuosity_s: ", average_sinuosity_s)
# println("**********")
#
# println("average_r_o: ", average_r_o)
# println("average_si_o: ", average_si_o)
# println("average_sinuosity_o: ", average_sinuosity_o)
# println("**********")
# Calculate the difference squared between averages of each summary statistic and
# push to big epsilon list
diff_r = (average_r_o - average_r_s)^2
diff_si = (average_si_o - average_si_s)^2
diff_sinuosity = (average_sinuosity_o - average_sinuosity_s)^2
# println("diff_r: ", diff_r)
# println("diff_si: ", diff_si)
# println("diff_sinuosity: ", diff_sinuosity)
# println("**********")
push!(epsilon_mean_r, diff_r)
push!(epsilon_si, diff_si)
push!(epsilon_sinuosity, diff_sinuosity)
end
# PRINT THE EPSILON VECTORS THAT WE WILL PLOT
# Should be the length of simulations
# println("epsilon_mean_r:", epsilon_mean_r)
# println("epsilon_si: ", epsilon_si)
# println("epsilon_sinuosity: ", epsilon_sinuosity)
# PLOT HISTOGRAM OF THE DIFFERENCES OF EACH SUMMARY STATISTIC
# STRAIGHTNESS INDEX
# a = epsilon_si
# plot2 = PyPlot.plt[:hist](a)
# PyPlot.xlabel("Straightness Index Difference between Simulated & Observed")
# PyPlot.title("Straightness Index Difference Distribution")
# SINUOSITY
b = epsilon_sinuosity
plot2 = PyPlot.plt[:hist](b)
PyPlot.xlabel("Epsilon between Simulated & Observed")
PyPlot.title("Sinuosity")