-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic-sign-train.py
179 lines (132 loc) · 5.44 KB
/
traffic-sign-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import matplotlib.pyplot as plt
import os
import time
import random
import glob
import cv2
from sklearn.preprocessing import LabelBinarizer
from sklearn.cross_validation import train_test_split
import keras
from keras.utils import plot_model
from keras.models import Sequential, load_model
from keras.layers import Conv2D, Dense, Activation, Flatten
def build_model():
num_classes = 3
model = Sequential()
model.add(Conv2D(filters=8, kernel_size=5, strides=(2, 2), input_shape=X_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(filters=16, kernel_size=5, strides=(2, 2)))
model.add(Activation('relu'))
model.add(Conv2D(filters=32, kernel_size=3, strides=(1, 1)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('relu'))
model.add(Dense(num_classes))
model.summary()
return model
def train_model(data, data_valid, model, epochs):
X_train, y_train = data[0], data[1]
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
start_time = time.time()
history = model.fit(X_train, y_train,
shuffle=True,
nb_epoch=epochs,
validation_data=(data_valid[0], data_valid[1])).history
end_time = time.time()
model.save('saved_models/model.h5')
print('')
print('Training time (seconds): ', end_time - start_time)
return history, model
def evaluate(data_test, model, batch_size, visual=True):
x_test = data_test[0]
y_test = data_test[1]
evaluation = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=0)
print('Model Accuracy = %.2f' % (evaluation[1]))
if visual:
predict = model.predict(x_test, batch_size=batch_size)
fig, axs = plt.subplots(3, 3, figsize=(11, 8), facecolor='w', edgecolor='k')
fig.subplots_adjust(hspace=.5, wspace=.001)
axs = axs.ravel()
for i in range(9):
axs[i].imshow(cv2.cvtColor(x_test[i], cv2.COLOR_BGR2RGB))
axs[i].set_title('Label: ' + str(np.argmax(y_test[i])) + ', Predict: '+str(np.argmax(predict[i])))
def get_training_images():
#base_image_path = 'training_images/'
base_image_path = 'training_imgs/'
light_colors = ["red", "green", "yellow"]
data = []
color_counts = np.zeros(3)
for color in light_colors:
for img_file in glob.glob(os.path.join(base_image_path, color, "*")):
img = cv2.imread(img_file)
if not img is None:
img = cv2.resize(img, (32, 32))
label = light_colors.index(color)
data.append((img, label, img_file))
color_counts[light_colors.index(color)] += 1
img_bright = img_brightness(img)
data.append((img_bright, label, img_file))
color_counts[light_colors.index(color)] += 1
img_flip = cv2.flip(img, 1)
data.append((img_flip, label, img_file))
color_counts[light_colors.index(color)] += 1
return data
def create_model_directory():
saved_model_dir = os.path.join(os.getcwd(), 'saved_models')
if not os.path.isdir(saved_model_dir):
os.makedirs(saved_model_dir)
return saved_model_dir
def img_brightness(image):
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
brightness = 0.25 + np.random.uniform()
hsv[:,:,2] = hsv[:,:,2] * brightness
return cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
def get_transformed_data(X_train, X_test, X_valid, y_train, y_test, y_valid):
encoder = LabelBinarizer()
encoder.fit(y_train)
X_train /= 255.
X_valid /= 255.
X_test /= 255.
y_train_onehot = encoder.transform(y_train)
y_test_onehot = encoder.transform(y_test)
y_valid_onehot = encoder.transform(y_valid)
data_train = [X_train, y_train_onehot]
data_test = [X_test, y_test_onehot]
data_valid = [X_valid, y_valid_onehot]
return data_train, data_test, data_valid
def preprocess_data(data):
random.shuffle(data)
X, y = [], []
for d in data:
X.append(d[0])
y.append(d[1])
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.09, random_state=832275)
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.093, random_state=832275)
X_train = np.array(X_train)
X_test = np.array(X_test)
X_valid = np.array(X_valid)
y_valid = np.array(y_valid)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_valid = X_valid.astype('float32')
return X_train, X_test, X_valid, y_train, y_test, y_valid
if __name__ == '__main__':
saved_model_dir = create_model_directory()
data = get_training_images()
X_train, X_test, X_valid, y_train, y_test, y_valid = preprocess_data(data)
data_train, data_test, data_valid = get_transformed_data(X_train, X_test, X_valid, y_train, y_test, y_valid)
batch_size = 32
epochs = 25
print("Number of training samples: %d, Number of validation samples: %d, Number of test samples: %d" % (len(X_train), len(X_valid), len(X_test)))
model = build_model()
plot_model(model, to_file='model.png')
history, model = train_model(data_train, data_valid, model, epochs)
plt.plot(history['loss'], linewidth=2.5)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
evaluate(data_test, model, batch_size)