-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCluster.py
472 lines (399 loc) · 18.4 KB
/
Cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 24 18:55:13 2020
@author: sg
"""
# seed the pseudorandom number generator
from random import seed
from random import random
from sklearn.cluster import KMeans
# seed random number generator
seed(1)
print(random(), random(), random())
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random
import argparse
from utils import *
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering, SpectralClustering
from sklearn.metrics import accuracy_score
from sklearn.utils.random import sample_without_replacement
from scipy.cluster.hierarchy import dendrogram, linkage,leaves_list
from matplotlib import pyplot as plt
import itertools
def run_kmeans(km, data, pc, m, n):
co_assoc = np.zeros((len(data), len(data)))
counter = np.zeros((len(data), len(data)))
for i in range(m):# m data partitions
data1 = sub_sampling(data, pc) # shuffle and subsample %90
data1X = data1.iloc[:, :-1] # exculde label
idx = data1X.index
km_temp = km.fit_predict(data1X) #k means predict
km_temp = pd.DataFrame(km_temp)
km_temp['idx'] = idx # keep index for adding Co-Assoc
km_temp = km_temp.set_index('idx')
km_temp = np.array(km_temp)
km_temp = km_temp.reshape(1, n)
km_temp = np.repeat(km_temp, n, axis=0)
temp_co = ((km_temp - km_temp.T) == 0) # To control if the elements seen in same cluster.
import time
#t = time.time()
#for i_counter in range(len(temp_co)):
# for j_counter in range(len(temp_co)):
# counter[idx[i_counter],idx[j_counter]] += 1 # counter keeps the number of pairs seen in the same conter
#print(time.time() - t, "Time bad")
idx = np.array(idx)
x = [i for a in range(len(temp_co)) for i in range(len(temp_co))]
y = [a for a in range(len(temp_co)) for i in range(len(temp_co))]
np.add.at(counter, [idx[x], idx[y]], 1)
#t = time.time()
#for tempx in range(len(temp_co)):
# for tempy in range(len(temp_co)):
# co_assoc[idx[tempx],idx[tempy]] += temp_co[tempx,tempy]
#print(time.time() - t, "Time Bad")
#t = time.time()
np.add.at(co_assoc, [idx[x], idx[y]], temp_co[x, y])
#print(time.time() - t, "Time Good")
return co_assoc, counter
def run_sl(sl, data, pc, m, n):
co_assoc = np.zeros((len(data), len(data)))
counter = np.zeros((len(data), len(data)))
for i in range(m):# m retries
data1 = sub_sampling(data, pc) # shuffle and subsample %90
data1X = data1.iloc[:, :-1] # exculde label
idx = data1X.index
km_temp = sl.fit_predict(data1X) #k means predict
km_temp = pd.DataFrame(km_temp)
km_temp['idx'] = idx
km_temp = km_temp.set_index('idx')
km_temp1 = np.array(km_temp)
km_temp1 = km_temp1.reshape(1, n)
km_temp1 = np.repeat(km_temp1, n, axis=0)
temp_co = ((km_temp1 - km_temp1.T) == 0)
#for i_counter in range(len(temp_co)):
# for j_counter in range(len(temp_co)):
# counter[idx[i_counter],idx[j_counter]] += 1
idx = np.array(idx)
x = [i for a in range(len(temp_co)) for i in range(len(temp_co))]
y = [a for a in range(len(temp_co)) for i in range(len(temp_co))]
np.add.at(counter, [idx[x], idx[y]], 1)
#for tempx in range(len(temp_co)):
# for tempy in range(len(temp_co)):
# co_assoc[idx[tempx],idx[tempy]] += temp_co[tempx,tempy]
np.add.at(co_assoc, [idx[x], idx[y]], temp_co[x, y])
return co_assoc, counter
def run_sc(sc, data, pc, m, n):
co_assoc = np.zeros((len(data), len(data)))
counter = np.zeros((len(data), len(data)))
for i in range(m):# m retries
data1 = sub_sampling(data, pc) # shuffle and subsample %90
data1X = data1.iloc[:, :-1] # exculde label
idx = data1X.index
km_temp = sc.fit_predict(data1X) #k means predict
km_temp = pd.DataFrame(km_temp)
km_temp['idx'] = idx
km_temp = km_temp.set_index('idx')
km_temp1 = np.array(km_temp)
km_temp1 = km_temp1.reshape(1, n)
km_temp1 = np.repeat(km_temp1, n, axis=0)
temp_co = ((km_temp1 - km_temp1.T) == 0)
idx = np.array(idx)
x = [i for a in range(len(temp_co)) for i in range(len(temp_co))]
y = [a for a in range(len(temp_co)) for i in range(len(temp_co))]
np.add.at(counter, [idx[x], idx[y]], 1)
np.add.at(co_assoc, [idx[x], idx[y]], temp_co[x, y])
return co_assoc, counter
def main(args):
data = get_dataset(args.dataset_name)
# set algorithms and parameters
kmeans_sl_params_list = args.kmeans_sl_params
sc_params_k_list = args.sc_params_k
sc_param_sigma = args.sc_param_sigma
algorithm_list = args.methods
n = int(len(data) * args.pc)
m = args.retries
permuted_parameter_list = list(itertools.product(algorithm_list[:2],
kmeans_sl_params_list))
if sc_params_k_list != []:
for k in sc_params_k_list:
permuted_parameter_list.append((algorithm_list[-1], k))
Cs = []
cooDict=[]
#idx = np.zeros(size)
#Multi-EAC
for i in range(len(permuted_parameter_list)):
k = permuted_parameter_list[i][1]
#Co_assoc = np.zeros((len(data),len(data)))
#counter = np.zeros((len(data),len(data)))
Alg_i = permuted_parameter_list[i][0]
if Alg_i == 'kmeans':
km = KMeans(n_clusters=k, init='random', n_init=10, max_iter=300)
Co_assoc, counter = run_kmeans(km, data, args.pc, m, n)
elif Alg_i == 'sl':
sl = AgglomerativeClustering(n_clusters=k, linkage='average')
Co_assoc, counter = run_sl(sl, data, args.pc, m, n)
elif Alg_i == 'sc':
sc = SpectralClustering(n_clusters=k, gamma=1/(2*sc_param_sigma))
Co_assoc, counter = run_sc(sc, data, args.pc, m, n)
Co_assoc /= counter # We divide Co-Assoc to counter.
dist_mat = Co_assoc.copy()
dist_mat = pd.DataFrame(dist_mat)
dist_mat = 1 - dist_mat
# TODO : distance threshold? It must be life time criteria
Z1 = linkage(Co_assoc, 'single')
lt = pd.DataFrame(Z1)
lt = lt.iloc[:,2:3]
lt['dif']=lt.shift(periods=1, fill_value=0)
diff = np.array(lt.iloc[:, 0]) - np.array(lt['dif']).reshape(len(lt['dif']), 1)
id = np.argmax(diff)
threshold_sl = np.mean(lt.iloc[id])
single = AgglomerativeClustering(n_clusters=None, linkage='single',
distance_threshold=threshold_sl, )
single.fit_predict(dist_mat)
sl_labels = single.labels_
sl_labels = pd.DataFrame(sl_labels)
unique_sl_labels = np.unique(sl_labels)
sl_labels['idx'] = sl_labels.index
unique_sl_labels = pd.DataFrame(unique_sl_labels)
# number of cluster in SL(P_A)
num_cs = len(unique_sl_labels)
# tensor: number of cluster * n * n
sl_mats = np.zeros((num_cs, len(data), len(data)))
Z2 = linkage(Co_assoc, 'average')
lt1 = pd.DataFrame(Z2)
lt1 = lt1.iloc[:,2:3]
lt1['dif']=lt1.shift(periods=1, fill_value=0)
diff = np.array(lt1.iloc[:,0:1])-np.array(lt1['dif']).reshape(len(lt1['dif']),1)
id = np.argmax(diff)
threshold_al = np.mean(lt1.iloc[id])
average = AgglomerativeClustering(n_clusters=None, linkage='average',
distance_threshold=threshold_al,)
average.fit_predict(dist_mat)
av_labels = average.labels_
av_labels = pd.DataFrame(av_labels)
unique_av_labels = np.unique(av_labels)
av_labels['idx'] = av_labels.index
unique_av_labels = pd.DataFrame(unique_av_labels)
# number of cluster in AL (P_B)
num_ca = len(unique_av_labels)
# tensor: number of cluster * n * n
av_mats = np.zeros((num_ca, len(data), len(data)))
# calculating stabilities of clusters.
for j in range(num_cs):
sl_temp = sl_labels[sl_labels.iloc[:,0]==j]
permute_sl_temp = list(itertools.product(sl_temp['idx'], sl_temp['idx'])) # we create a list of pairs within clusters
for p in permute_sl_temp:
sl_mats[j,p[0],p[1]] = 1 # We set pairs 1 in n*n matris and the others are 0
for j in range(num_ca):
av_temp = av_labels[av_labels.iloc[:,0]==j]
permute_av_temp = list(itertools.product(av_temp['idx'], av_temp['idx']))
for p in permute_av_temp:
av_mats[j,p[0],p[1]] = 1
cluster_mats = np.concatenate((sl_mats, av_mats), axis=0) # concatenating AL and SL results into 3D tensor.
cluster_mats = cluster_mats * Co_assoc # using cluster mats as a mask for Co-assoc.
cluster_list = []
for i in range(cluster_mats.shape[0]):
cluster_temp = cluster_mats[i]
cluster_temp = cluster_temp[cluster_temp!=0]
cluster_stab = np.mean(cluster_temp)
if cluster_stab < 0.9: # threshold clusters.
cluster_list.append(i)
cluster_list.reverse()
for i in cluster_list:
cluster_mats = list(cluster_mats)
cluster_mats.pop(i)
if(len(cluster_mats)>0):
cluster_mats = np.array(cluster_mats)
C = np.mean(cluster_mats, axis=0) # this max is used for combining output matricies of one algorithm.
Cs.append(C)
aa = np.array(Cs)
cm = np.max(aa, axis=0) # and the second max is used for combining the C^i for creating C_M
import seaborn as sns;
cm1 = 1-cm
Z3 = linkage(cm1, 'average')
lt2 = pd.DataFrame(Z3)
lt2 = lt2.iloc[:,2:3]
lt2['dif']=lt2.shift(periods=1, fill_value=0)
diff = np.array(lt2.iloc[:,0:1])-np.array(lt2['dif']).reshape(len(lt2['dif']),1)
id = np.argmax(diff)
threshold_al = np.mean(lt2.iloc[id])
average = AgglomerativeClustering(n_clusters=None, linkage='average',
distance_threshold=threshold_al)
average.fit_predict(cm1)
cm_labels = average.labels_
ax = sns.heatmap(cm)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Clustering")
parser.add_argument('dataset_name', metavar='D', type=str,
help="Enter the name of the dataset")
parser.add_argument('--methods', metavar='M', type=str, nargs='+',
default=['kmeans', 'sl', 'sc'],
help="Enter the methods to be tested")
parser.add_argument('--kmeans_sl_params', metavar='KNNSL', type=int,
nargs='+', default=[3, 5, 10, 12, 15],
help="k-means and SL parameters (k)")
parser.add_argument('--sc_params_k', metavar='SC', type=int,
nargs='+', default=[3, 12],
help="Spectral Clustering parameter (k)")
parser.add_argument('--sc_param_sigma', metavar='SC', type=float,
default=0.1,
help="Spectral Clustering parameter (sigma)")
parser.add_argument('--pc', metavar='P', type=float, default=0.9,
help="Subsample Percentage b/w 0 and 1")
parser.add_argument('--retries', metavar='R', type=int, default=100,
help="Number of retries for each experiments")
args = parser.parse_args()
main(args)
"""
#load iris data
data_iris=pd.read_csv('data/iris.data')
#data_cancer=pd.read_csv('data/breast-cancer-wisconsin.data')
#data_yeast=pd.read_csv('data/yeast.data')
le = preprocessing.LabelEncoder()
data_iris['Iris-setosa'] = le.fit_transform(data_iris['Iris-setosa'])
# set size of subsample
size=90
n = int(len(data_iris) * size/100)
# m is experiment number.
m=100
data_len = int(len(data_iris))
# set alogrithms and parameters
parameter_list=[3, 5, 10, 12, 15]
<<<<<<< HEAD
#algorithm_list = ['knn','sl']
algorithm_list = ['knn']
=======
algorithm_list = ['knn', 'sl']
>>>>>>> 87cf72dd8a61f1eaf691ee92c6582416369e08e7
# I permute parameters and algorithm types as a list then loop them for MultiEAC
permute_parameter_list = list(itertools.product(algorithm_list, parameter_list))
Cs = []
cooDict=[]
idx = np.zeros(size)
#Multi-EAC
for i in range(len(permute_parameter_list)):#algorithms
k = permute_parameter_list[i][1]
Co_assoc = np.zeros((len(data_iris),len(data_iris)))
km = KMeans(n_clusters=k, init='random',n_init=10, max_iter=300,random_state=42)
sl = AgglomerativeClustering(n_clusters=k, linkage='average')
counter = np.zeros((data_len,data_len))
Alg_i = permute_parameter_list[i][0]
if(Alg_i == 'knn'):
for i in range(m):# m data partitions
data1 = sub_sampling(data_iris, size/100) # shuffle and subsample %90
data1X = data1.iloc[:,0:4] # exculde label
idx = data1X.index
km_temp =km.fit_predict(data1X) #k means predict
km_temp = pd.DataFrame(km_temp)
km_temp['idx'] = idx # keep index for adding Co-Assoc
km_temp = km_temp.set_index('idx')
km_temp1 = np.array(km_temp)
km_temp1 = km_temp1.reshape(1,n)
km_temp1 = np.repeat(km_temp1,n,axis=0)
temp_co = ((km_temp1-km_temp1.T)==0) # To control if the elements seen in same cluster.
for i_counter in range(len(temp_co)):
for j_counter in range(len(temp_co)):
counter[idx[i_counter],idx[j_counter]]+= 1 # counter keeps the number of pairs seen in the same conter
for tempx in range(len(temp_co)):
for tempy in range(len(temp_co)):
Co_assoc[idx[tempx],idx[tempy]] += temp_co[tempx,tempy]
if(Alg_i == 'sl'):
for i in range(m):# m data partitions
data1 = sub_sampling(data_iris, size) # shuffle and subsample %90
data1X = data1.iloc[:,0:4] # exculde label
idx = data1X.index
km_temp =sl.fit_predict(data1X) #k means predict
km_temp = pd.DataFrame(km_temp)
km_temp['idx'] = idx
km_temp = km_temp.set_index('idx')
km_temp1 = np.array(km_temp)
km_temp1 = km_temp1.reshape(1,n)
km_temp1 = np.repeat(km_temp1,n,axis=0)
temp_co = ((km_temp1-km_temp1.T)==0)
for i_counter in range(len(temp_co)):
for j_counter in range(len(temp_co)):
counter[idx[i_counter],idx[j_counter]]+= 1
for tempx in range(len(temp_co)):
for tempy in range(len(temp_co)):
Co_assoc[idx[tempx],idx[tempy]] += temp_co[tempx,tempy]
Co_assoc /= counter # We divide Co-Assoc to counter.
dist_mat = Co_assoc.copy()
dist_mat = pd.DataFrame(dist_mat)
dist_mat = 1 - dist_mat
# TODO : distance threshold? It must be life time criteria
Z1 = linkage(Co_assoc, 'single')
lt = pd.DataFrame(Z1)
lt = lt.iloc[:,2:3]
lt['dif']=lt.shift(periods=1, fill_value=0)
diff = np.array(lt.iloc[:,0:1])-np.array(lt['dif']).reshape(len(lt['dif']),1)
id = np.argmax(diff)
threshold_sl = np.mean(lt.iloc[id])
single = AgglomerativeClustering(n_clusters=None,distance_threshold=threshold_sl, linkage='single')
single.fit_predict(dist_mat)
sl_labels = single.labels_
sl_labels = pd.DataFrame(sl_labels)
unique_sl_labels = np.unique(sl_labels)
sl_labels['idx'] = sl_labels.index
unique_sl_labels = pd.DataFrame(unique_sl_labels)
num_cs = len(unique_sl_labels) # number of cluster in SL(P_A)
sl_mats = np.zeros((num_cs,len(data_iris),len(data_iris))) # tensor: number of cluster * n * n
Z2 = linkage(Co_assoc, 'average')
lt1 = pd.DataFrame(Z2)
lt1 = lt1.iloc[:,2:3]
lt1['dif']=lt1.shift(periods=1, fill_value=0)
diff = np.array(lt1.iloc[:,0:1])-np.array(lt1['dif']).reshape(len(lt1['dif']),1)
id = np.argmax(diff)
threshold_al = np.mean(lt1.iloc[id])
average = AgglomerativeClustering(n_clusters=None,distance_threshold=threshold_al,linkage='average')
average.fit_predict(dist_mat)
av_labels = average.labels_
av_labels = pd.DataFrame(av_labels)
unique_av_labels = np.unique(av_labels)
av_labels['idx'] = av_labels.index
unique_av_labels = pd.DataFrame(unique_av_labels)
num_ca = len(unique_av_labels) # number of cluster in AL (P_B)
av_mats = np.zeros((num_ca,len(data_iris),len(data_iris)))# tensor: number of cluster * n * n
# calculating stabilities of clusters.
for j in range(num_cs):
sl_temp = sl_labels[sl_labels.iloc[:,0]==j]
permute_sl_temp = list(itertools.product(sl_temp['idx'], sl_temp['idx'])) # we create a list of pairs within clusters
for p in permute_sl_temp:
sl_mats[j,p[0],p[1]] = 1 # We set pairs 1 in n*n matris and the others are 0
for j in range(num_ca):
av_temp = av_labels[av_labels.iloc[:,0]==j]
permute_av_temp = list(itertools.product(av_temp['idx'], av_temp['idx']))
for p in permute_av_temp:
av_mats[j,p[0],p[1]] = 1
cluster_mats = np.concatenate((sl_mats, av_mats), axis=0) # concatenating AL and SL results into 3D tensor.
cluster_mats = cluster_mats * Co_assoc # using cluster mats as a mask for Co-assoc.
cluster_list = []
for i in range(cluster_mats.shape[0]):
cluster_temp = cluster_mats[i]
cluster_temp = cluster_temp[cluster_temp!=0]
cluster_stab = np.mean(cluster_temp)
if cluster_stab < 0.9: # threshold clusters.
cluster_list.append(i)
cluster_list.reverse()
for i in cluster_list:
cluster_mats = list(cluster_mats)
<<<<<<< HEAD
if len(cluster_mats) > 1:
cluster_mats.pop(i)
cluster_mats = np.array(cluster_mats)
C = np.max(cluster_mats, axis=0) # this max is used for combining output matricies of one algorithm.
Cs.append(C)
"""
'''
Z1 = linkage(Co_assoc, 'single')
SL_labels = Z1.labels_
Z2 = linkage(Co_assoc, 'average')
fig = plt.figure(figsize=(25, 10))
dn = dendrogram(Z1)
dn2 = dendrogram(Z2)
plt.show()
L1 = leaves_list(Z1)
L2 = leaves_list(Z2)
'''