-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchip-seq-visualizer.py
53 lines (41 loc) · 1.62 KB
/
chip-seq-visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import pandas as pd
import matplotlib.pyplot as plt
# The path to the directory that contains your bed files
root_dir = '.'
# Create an empty DataFrame to hold lengths and labels
data = pd.DataFrame(columns=['Length', 'Label'])
# Traverse through directories and subdirectories
for subdir, dirs, files in os.walk(root_dir):
for file in files:
# Check if the file is a bed file
if file.endswith('.bed'):
# Read the bed file into a pandas DataFrame
df = pd.read_csv(os.path.join(subdir, file), sep='\t', header=None, names=['Chromosome', 'Start', 'End', 'Label'])
# Calculate the length of the annotated part
df['Length'] = df['End'] - df['Start']
# Select only 'Length' and 'Label' columns
df = df[['Length', 'Label']]
# Append data to the main DataFrame
data = pd.concat([data, df])
# Ensure 'Length' column in the final DataFrame is of type int
data['Length'] = data['Length'].astype(int)
# Create a histogram for each label
labels = data['Label'].unique()
for label in labels:
plt.figure()
data[data['Label'] == label]['Length'].hist(bins=50)
plt.title('Length distribution for {}'.format(label))
plt.xlabel('Length')
plt.ylabel('Frequency')
plt.grid(False)
plt.show()
# Create a boxplot for each label
labels = data['Label'].unique()
for label in labels:
plt.figure()
data[data['Label'] == label].boxplot(column='Length')
plt.title('Length distribution for {}'.format(label))
plt.ylabel('Length')
plt.grid(False)
plt.show()